Math, asked by Maithly2077, 10 months ago

Find n,if nC5=nC7 Answer it.....

Answers

Answered by BrainlyPopularman
6

GIVEN :

 \\ \sf \implies  {}^{n} c_{5} ={}^{n} c_{7} \\

TO FIND :

Value of 'n' = ?

SOLUTION :

 \\ \sf \implies  {}^{n} c_{5} ={}^{n} c_{7} \\

• We know that –

 \\ \large \longrightarrow  \: { \boxed{ \sf {}^{n} c_{r} = \dfrac{n {\displaystyle !\,}}{(n - r){\displaystyle !\,}(r){\displaystyle !\,}}  }}\\

 \\ \sf \implies \dfrac{n {\displaystyle !\,}}{(n - 5){\displaystyle !\,}(5){\displaystyle !\,}}  =\dfrac{n {\displaystyle !\,}}{(n - 7){\displaystyle !\,}(7){\displaystyle !\,}}  \\

 \\ \sf \implies \dfrac{1}{(n - 5){\displaystyle !\,}(5){\displaystyle !\,}}  =\dfrac{1}{(n - 7){\displaystyle !\,}(7){\displaystyle !\,}}  \\

• We know that Value of Factorial –

 \\ \sf \longrightarrow \:  n{\displaystyle !\,} = n.(n - 1).(n - 2) .(n - 3).........3.2.1 \\

• So , We can write this as –

 \\ \sf \implies \dfrac{1}{(n - 5)(n - 6)(n - 7){\displaystyle !\,}(5){\displaystyle !\,}}  =\dfrac{1}{(n - 7){\displaystyle !\,}(7)(6)(5){\displaystyle !\,}}  \\

 \\ \sf \implies \dfrac{1}{(n - 5)(n - 6)}  =\dfrac{1}{(7)(6)}  \\

 \\ \sf \implies (n - 5)(n - 6) =(7)(6) \\

 \\ \sf \implies  {n}^{2} - 6n - 5n + 30 =42 \\

 \\ \sf \implies  {n}^{2} - 6n - 5n + 30  - 42 = 0 \\

 \\ \sf \implies  {n}^{2} -11n  - 12 = 0 \\

• Now Splitting Middle term –

 \\ \sf \implies  {n}^{2} -12n  + n - 12 = 0 \\

 \\ \sf \implies n(n - 12)  + 1(n - 12) = 0 \\

 \\ \sf \implies (n + 1)(n - 12)= 0 \\

 \\ \sf \implies n =  - 1 \: , \: 12 \\

 \\ \sf  \:  \: \because  \:  \: n =  - 1  \:  \: is \:  \: not \:  \: possible.\\

• So that –

 \\ \:  \: \longrightarrow  \:  \large{ \boxed{  \sf n = 12 }} \\

Similar questions