Math, asked by BrainlyMiracler723, 4 months ago

Find n if
(1\frac{1}{3} {)}^{n} - (1 \times \frac{1}{3}) =  \frac{28}{27} \\  \\  \\  \\
No spams!!​

Answers

Answered by guptajitendrabca1
1

Step-by-step explanation:

(1 \frac{ 1  }{ 3  }  )  ^ { x  }  -(1 \times   \frac{ 1  }{ 3  }  )= \frac{ 28  }{ 27  }

\left(\frac{3+1}{3}\right)^{x}-1\times \left(\frac{1}{3}\right)=\frac{28}{27}

\left(\frac{4}{3}\right)^{x}-1\times \left(\frac{1}{3}\right)=\frac{28}{27}

\left(\frac{4}{3}\right)^{x}-\frac{1}{3}=\frac{28}{27}

\left(\frac{4}{3}\right)^{x}-\frac{1}{3}-\frac{28}{27}=0

\left(\frac{4}{3}\right)^{x}-\frac{37}{27}=0

\left(\frac{4}{3}\right)^{x}=\frac{37}{27}

\log(\left(\frac{4}{3}\right)^{x})=\log(\frac{37}{27})

x\log(\frac{4}{3})=\log(\frac{37}{27})

x=\frac{\log(\frac{37}{27})}{\log(\frac{4}{3})}

x=\log_{\frac{4}{3}}\left(\frac{37}{27}\right)

Similar questions