Find n in the equation
5raise to 2,× 5raise to 4 ×5 raise to 6.....×5 raise to 2n =(125)30
Answers
Answered by
1
Answer: n= 9 or -10
Step-by-step explanation:
5^2× 5^4× 5^6× .......... × 5^(2n) = (125)^30
5^(2+4+6+........+2n) = (5×5×5) ^30
5^(2+4+6+........+2n) = 5^(3×30)
5^2(1+2+3+4+........+n) = 5^90
Now, 1+2+3+4+....+n=n(n+1) /2
2(1+2+3+4+....+n)=n(n+1)
Hence, 5^2(1+2+3+4+........+n) = 5^90
5^n(n+1) = 5^90
Comparing exponents, as base are equal,
n(n+1) =90
n^2+n-90= 0
n^2 + 10n-9n -90= 0
n(n+10) -9(n+10) =0
(n+10) (n-9) =0
either n+10=0, n=-10
Or, n-9=0, n=9
Similar questions