Math, asked by Anonymous, 5 hours ago

Find 'n' so that a^(n+2) + b^(n+2)/a^(n+1) + b^(n+1) is the A.M between a and b

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\dfrac{ {a}^{n + 2} + {b}^{n + 2} }{ {a}^{n + 1} + {b}^{n + 1} } is \: the \: arithmetic\: mean \: between \:a \: and \: b

So, it implies,

\rm :\longmapsto\:\dfrac{ {a}^{n + 2} + {b}^{n + 2} }{ {a}^{n + 1} + {b}^{n + 1} }  = \dfrac{a + b}{2}

\rm :\longmapsto\:2( {a}^{n + 2} +  {b}^{n + 2}) = (a + b)( {a}^{n + 1} +  {b}^{n + 1})

\rm :\longmapsto\:2{a}^{n + 2} +  2{b}^{n + 2}= {a}^{n + 2} +  a{b}^{n + 1}+ b {a}^{n + 1} +  {b}^{n + 2}

\rm :\longmapsto\:2{a}^{n + 2} +  2{b}^{n + 2} - {a}^{n + 2} -  {b}^{n + 2} = a{b}^{n + 1}+ b {a}^{n + 1}

\rm :\longmapsto\:{a}^{n + 2} + {b}^{n + 2}= a{b}^{n + 1}+ b {a}^{n + 1}

\rm :\longmapsto\:{a}^{n + 2} - {ba}^{n + 1}= a{b}^{n + 1} -  {b}^{n + 2}

\rm :\longmapsto\: {a}^{n + 1}(a - b) =  {b}^{n + 1}(a - b)

\rm :\longmapsto\: {a}^{n + 1} =  {b}^{n + 1}

\rm :\longmapsto\:\dfrac{ {a}^{n + 1} }{ {b}^{n + 1} }  = 1

\rm :\longmapsto\: {\bigg(\dfrac{a}{b} \bigg) }^{n + 1} = {\bigg(\dfrac{a}{b} \bigg) }^{0}

So, on comparing, we get

\rm :\longmapsto\:n + 1 = 0

\bf\implies \:n =  -  \: 1

Additional Information :-

1. Arithmetic mean > Geometric mean if observations are distinct.

2. Geometric mean between 2 positive numbers a and b is

\sf \: \sqrt{ab}

3. If n A.M's are inserted between two numbers a and b, then sum of n A.M's is n times the single AM between a and b.

Similar questions