Math, asked by swatimishra262008, 1 month ago

find n so that
 {2}^{11}  \div  {2}^{5}  =  {2}^{ - 3}  \times  {2}^{2n - 1}

Answers

Answered by Anonymous
16

Solution:-

 \sf{{2}^{11}  \div  {2}^{5}  =  {2}^{ - 3}  \times  {2}^{2n - 1}}

 \sf \red{ {a}^{m}  \div  {a}^{n} =  {a}^{m - n}  }

 \sf \red{ {a}^{m}  \times {a}^{n} =  {a}^{m  +  n}  }

 \sf{{2}^{11 - 5}  =  {2}^{ - 3 +2 n - 1}}

 \sf{{2}^{6}  =  {2}^{ 2 n - 1 - 3 }}

 \sf{{2}^{6}  =  {2}^{  2 n - 4 }}

 \sf \red{6 = 2n - 4}

 \sf \red{6  + 4= 2n }

 \sf \red{10= 2n }

 \sf \red{ \frac{ \cancel10}{ \cancel2} = n }

 \sf{n = 5}

Answered by BrainlyGayathri
5

Question:-

 \frac{ {2}^{11} }{ {2}^{5} }  =  {2}^{ - 3}  \times  {2}^{2n - 1}

Required Formulae:-

 {a}^{m - n}  =  \frac{ {a}^{m} }{ {a}^{n} }

 {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

( {a}^{m} ) ^{n}  =  {a}^{mn}

Solution:-

Using formulae question becomes

 {2}^{11 - 5}  =   {2}^{( - 3) + 2n - 1}

 {2}^{6}  =  {2}^{2n - 4}

Bases are equal. So, powers also equal

6 = 2n - 4

2n = 6 + 4

2n = 10

n =  \frac{10}{2}  = 5

Final Answer:-

The value of n is 5

Similar questions