Math, asked by sruthysubhash2, 15 days ago

Find n such that P(n,5) = 42 P( n,3), n>4​

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\:P(n,5) = 42P(n,3)

\large\underline{\sf{To\:Find - }}

The value of n

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:P(n,5) = 42P(n,3)

We know,

\boxed{ \rm{ P(n,r) =  \frac{n!}{(n - r)!} \: where \: n \geqslant r}}

Using this, we get

\rm :\longmapsto\:\dfrac{n!}{(n - 5)!}  = 42 \times \dfrac{n!}{(n - 3)!}

\rm :\longmapsto\:\dfrac{1}{(n - 5)!}  = 42 \times \dfrac{1}{(n - 3)(n - 4)(n - 5)!}

\rm :\longmapsto\:1  = 42 \times \dfrac{1}{(n - 3)(n - 4)}

\rm :\longmapsto\:(n - 3)(n - 4) = 42

\rm :\longmapsto\:(n - 3)(n - 4) = 7 \times 6

On comparing, we get

\rm :\longmapsto\:n - 3 = 7

\bf\implies \:n = 10

Verification :-

Consider,

\rm :\longmapsto\:P(n,5)

\rm \:  =  \:  \: P(10,5)

\rm \:  =  \:  \: \dfrac{10!}{(10 - 5)!}

\rm \:  =  \:  \: \dfrac{10!}{5!}

Now, Consider,

\rm :\longmapsto\:42 \: P(n,3)

\rm \:  =  \:  \: 42 \: P(10,3)

\rm \:  =  \:  \: 42 \times \dfrac{10!}{(10 - 3)!}

\rm \:  =  \:  \: 42 \times \dfrac{10!}{7!}

\rm \:  =  \:  \: 42 \times \dfrac{10!}{7 \times 6 \times 5!}

\rm \:  =  \:  \:  \dfrac{10!}{5!}

Hence,

\rm :\longmapsto\:P(n,5) = 42P(n,3)

Hence, Verified

Similar questions