Math, asked by Kartik9143, 2 months ago

Find nature of roots of 2x^2+3x+2

Answers

Answered by LivetoLearn143
1

\large\underline{\sf{Solution-}}

Given quadratic expression is

\rm :\longmapsto\:f(x) =  {2x}^{2} + 3x + 2

We know

Nature of roots depends upon the Discriminant of quadratic equation.

Let us consider a quadratic polynomial, f(x) = ax² + bx + c, then nature of roots of quadratic polynomial depends upon Discriminant (D).

If Discriminant, D > 0, then roots of the equation are real and distinct.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Here,

\rm :\longmapsto\:a = 2

\rm :\longmapsto\:b = 3

\rm :\longmapsto\:c = 2

So,

\rm :\longmapsto\:Discriminant,  D =  {b}^{2} - 4ac

\rm \:  =  \:  \:  {(3)}^{2}  - 4 \times 2 \times 2

\rm \:  =  \:  \: 9 - 16

\rm \:  =  \:  \:   - 7

\bf\implies \:Discriminant,  D =  - 7 &lt; 0

Hence,

Roots are unreal or complex or imaginary.

Similar questions