Math, asked by dachuzzz, 1 year ago

find nature of roots of quadratic equation 3x^2+4x-8=0​

Answers

Answered by Anonymous
11

\huge{\mathfrak{\underline{\underline{\red{Answer :-}}}}}

Real and two distinct roots

\large{\mathrm{\underline{\gray{Given :-}}}}

Equation :- 3x² + 4x - 8 = 0

a = 3

b = 4

c = -8

\large{\mathrm{\underline{\gray{To \: Find :-}}}}

Nature of roots

\large{\mathrm{\underline{\gray{Solution :-}}}}

[Quadratic formula]

\huge{\boxed{\boxed{\bf{D \: = \: b^{2} \: - \: 4ac}}}}

___________________[Put Values]

D = (3)² - 4(3)(-8)

D = 9 - (-96)

D = 9 + 96

D = 105

✯ We know that when D is greater than zero. Then, equation real and Distinct roots

\large{\boxed{\boxed{Real \: and \: equal \: roots}}}

\large{\mathrm{\underline{\gray{Extra \: information :-}}}}

√D = √105

Now to find zeroes we have a formula :-

\huge{\bf{\boxed{\boxed{x \: = \: {\frac{-b \: ± \: {\sqrt{D}}}{2a}}}}}}

______________[Put values]

x = (- 4 ± √105)/2(3)

x = (-4 ± √185)/6

_________________________

✯ Case 1

x = (-4 + √105)/6

________________________

✯ Case 2

x = (-4 - √105)/6

_________________________

\large{\bf{\boxed{\boxed{x \: = \frac{ - 4 +  \sqrt{105} }{6}  }}}}

Or

\large{\boxed{\boxed{x \: = \: \frac{ - 4 - \sqrt{105} }{6} }}}

Similar questions