find nth derivative for y=sin3xcos2x
Answers
Answered by
0
Step-by-step explanation:
start with a generalized product rule by letting u=cos(2x)
f(x)=x⋅u
f′(x)=x⋅u′+u
f′′(x)=x⋅u′′+u′+u′=x⋅u′′+2u′
f′′′(x)=x⋅u′′′+u′′+2u′′=x⋅u′′′+3u′′
f(4)(x)=x⋅u(4)+u′′′+3u′′′=x⋅u(4)+4u′′′
... f(n)(x)=x⋅u(n)+nu(n−1)
now for the fun part,
u=cos(2x)
u′=−2sin(2x)
u′′=−4cos(2x)
u′′′=8sin(2x)
u(4)=16cos(2x)
...
note that both ±cos(2x) and ±sin(2x) can be written in the form cos(2x+b) where b is a multiple of π2
... u(n)=2ncos(2x+b)=2n[cos(2x)cosb−sin(2x)sinb]
Similar questions