Math, asked by devraj418, 3 months ago

find Nth derivative of (2-3x)^n​

Answers

Answered by MaheswariS
0

\textbf{Given:}

\mathsf{(2-3x)^n}

\textbf{To find:}

\mathsf{n\,th\;derivative\;of\;(2-3x)^n}

\textbf{Solution:}

\mathsf{Let\;y=(2-3x)^n}

\mathsf{\dfrac{dy}{dx}=n\,(2-3x)^{n-1}\;(-3)}

\mathsf{\dfrac{d^2y}{dx^2}=n(n-1)\,(2-3x)^{n-2}\;(-3)^2}

\mathsf{\dfrac{d^3y}{dx^3}=n(n-1)(n-2)\,(2-3x)^{n-3}\;(-3)^3}

\mathsf{Proceeding\;like\;this,\;we\;get}

\mathsf{\dfrac{d^2y}{dx^2}=n(n-1)(n-2)\;.\;.\;.\;.\;.2.1\,(2-3x)^{n-n}\;(-3)^n}

\mathsf{\dfrac{d^2y}{dx^2}=n(n-1)(n-2)\;.\;.\;.\;.\;.2.1\,(2-3x)^0\;(-3)^n}

\mathsf{\dfrac{d^ny}{dx^n}=(n(n-1)(n-2)\;.\;.\;.\;.\;.2.1)\;(-3)^n}

\implies\boxed{\mathsf{\dfrac{d^ny}{dx^n}=n!\;(-3)^n}}

\textbf{Find more:}

Differentiate w. r. t.x.

(x^3-2x-1)^5

​https://brainly.in/question/16682392

If y = tan-1(6x-7/6+7x)

then dy/dx is

​https://brainly.in/question/36894600

Similar questions