Math, asked by deeputhapa493, 1 year ago

Find nth derivative of sinx cos3x

Answers

Answered by JayKushwah
10
Sinx.Cos3x
Sinx (4Cos^3x - 3Cosx)
Sinx Cosx (4Cos^2x - 3)
Answered by pulakmath007
1

The nth derivative of sin x cos 3x

\displaystyle \sf{= \frac{1}{2}  \bigg[ {4}^{n} \sin \bigg( \frac{n\pi}{2} + 4x\bigg) -  {2}^{n} \sin \bigg( \frac{n\pi}{2} + 2x\bigg) \bigg] }

Given :

sin x cos 3x

To find :

The nth derivative of sin x cos 3x

Formula :

The nth order derivative of sin ax

 \displaystyle \sf{ \frac{ {d}^{n} }{d {x}^{n} }( \sin ax) = {a}^{n} \sin \bigg( \frac{n\pi}{2} + ax\bigg)}

Solution :

Step 1 of 3 :

Write down the given expression

The given expression is sin x cos 3x

Step 2 of 3 :

Express as sum of two Trigonometric function

 \displaystyle \sf{ \sin x \cos 3x }

 = \displaystyle \sf{ \frac{1}{2} \bigg( 2 \sin x \cos 3x\bigg) }

 = \displaystyle \sf{ \frac{1}{2} \bigg( \sin 4x - \sin 2x\bigg) }

Step 3 of 3 :

Find nth derivative of sin x cos 3x

 \displaystyle \sf{ \frac{ {d}^{n} }{d {x}^{n} } \bigg( \sin x \cos 3x \bigg)}

 = \displaystyle \sf{ \frac{1}{2} \times \frac{ {d}^{n} }{d {x}^{n} }( \sin 4x) - \frac{1}{2} \times \frac{ {d}^{n} }{d {x}^{n} }( \sin 2x)}

 \displaystyle \sf{= \frac{1}{2} \times {4}^{n} \sin \bigg( \frac{n\pi}{2} + 4x\bigg) - \frac{1}{2} \times {2}^{n} \sin \bigg( \frac{n\pi}{2} + 2x\bigg) }

\displaystyle \sf{= \frac{1}{2}  \bigg[ {4}^{n} \sin \bigg( \frac{n\pi}{2} + 4x\bigg) -  {2}^{n} \sin \bigg( \frac{n\pi}{2} + 2x\bigg) \bigg] }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the nth derivative of sin 6x cos 4x.

https://brainly.in/question/29905039

2. let 5f(x)+ 3f(1/x)=x+2 and y= xf(x) . then x=1 point dy/dx=?

https://brainly.in/question/19870192

3. Let f(1) = 3,f' (1)=- 1/3,g (1)=-4 and g' (1) =-8/3

The derivative of √[[f(x)]^2+ [g (x)]^2] W. r. to. x. is

https://brainly.in/question/18312318

Similar questions