Math, asked by kalimkhan, 1 year ago

find nth derivative of x^2e^x​

Answers

Answered by brunoconti
4

Answer:

Step-by-step explanation:

brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest brainliest

Attachments:
Answered by Anonymous
9

The n^{th} derivative of the given function

  y = x^2 e^x is given by

y_{n} = 2(n-1)e^x + 2xe^x + y_{n-1}

  • Now we have

            y = x^2 e^x

  • differentiating with respect to 'x', we get

       y_{1} = 2xe^x +x^2e^x    

      here y = x^2 e^x therefore,

        y_{1} = 2xe^x +y      - (1)

  • Now, differentiating (1) with respect to'x',we get

       y_{2} = 2e^x +2xe^x + y_{1}       - (2)

  • differentiating (2) with respect to 'x', we get

         y_{3} = 4e^x +2xe^x + y_{2}       - (3)

  • differentiating (3) with respect to 'x', we get

          y_{4} = 6e^x +2xe^x + y_{3}      - (4)

  • Now (1), (2), (3) and (4) can also be written as

    y_{1} = 2(1-1)e^x +2xe^x +y_{(1-1)}

    y_{2} = 2(2-1)e^x +2xe^x + y_{(2-1)}

    y_{3} = 2(3-1)e^x +2xe^x + y_{(3-1)}

    y_{4} = 2(4-1)e^x +2xe^x + y_{(4-1)}

    Similarly we can write nth derivative of y as

      y_{n} = 2(n-1)e^x + 2xe^x + y_{n-1}

Similar questions