Math, asked by saheb9957, 10 months ago

Find nth derivative of y tan inverse (1+x)/(1-x)

Answers

Answered by subhashnidevi4878
13

Answer:

\frac{dy}{dx} = \frac{1}{1 + x^{2}}

Step-by-step explanation:

Given,

\tan^{-1}\frac{(1 + x)}{1 - x}

put,

x = \tan\theta

so,

y = \tan^{-1}\frac{(1+\tan\theta)}{(1 - tan\theta)}

y = tan^-^1 (\frac {tan\frac{\pi}{4} + tan\theta}{1 - tan\frac{\pi}{4}.tan\theta})

y = \tan^{-1}({tan\frac{\pi}{4} + \theta })

y = \frac{\pi}{4} + \theta

x = \tan\theta

\theta = tan^{-x}

y = \frac{\pi}{4} + tan^{-x}

differentiate on both side,

\frac{dy}{dx} = \frac{1}{1 + x^{2}}

its is also known as,

\frac{dy}{dx} = \frac{1}{2i}\times(\frac{1}{x - i} - \frac{1}{x + i})

       

Answered by smartAbhishek11
2

Step-by-step explanation:

.........._____________

____________ __________________

Attachments:
Similar questions