Math, asked by abhaysharms112, 17 days ago

find nth derivative of y=x^3. e^x.cosx​

Answers

Answered by p963096
1

Answer:

Let y=e

6x

cos3x

dx

dy

=

dx

d

(e

6x

.cos3x)=cos3x.

dx

d

(e

6x

)+e

6x

.

dx

d

(cos3x)

=cos3x.e

6x

dx

d

(6x)+e

6x

.(−sin3x).

dx

d

(3x)

=6e

6x

cos3x−3e

6x

sin3x ....(1)

dy

2

d

2

x

=

dx

d

(6e

6x

cos3x−3e

6x

sin3x)=6

dx

d

(e

6x

cos3x)−3

dx

d

(e

6x

sin3x)

=6[6e

6x

cos3x−3e

6x

sin3x]−3[sin3x

dx

d

(e

6x

)+e

6x

dx

d

(sin3x)

=36e

6x

cos3x−18e

6x

sin3x−3[sin3x.e

6x

.6+e

6x

cos3x.3]

=27e

6x

cos3x−36e

6x

sin3x=9e

6x

(3cos3x−4sin3x)

Similar questions