Math, asked by Anonymous, 9 months ago

. Find nth term a, (general term of the A.P.) whose first term is a and
common difference is d. If pth term of an A.P. is q and the oth term is p.
prove that the nth term is (p + q - n).
[CBSE 2014]

Answers

Answered by nitashachadha84
5

Solution

pth term = q

a+(p−1)d=q

qth term = p

a+(q−1)d=p

  • Solving these equations,

we get,

d=−1

a=(p+q−1)

Thus,

nth term = a+(n−1)d=(p+q−1)+(n−1)×(−1)

  \bold{\implies}

=(p+q−n)

Answered by itzcutiepie777
2

Answer:

\pink{\boxed{\boxed{\boxed{Answer:-}}}}

<font color= "Black">

<marquee behaviour-move><font color="orange"><h1>#itzcutiepie </h1></marquee>

\pink{\boxed{\boxed{\boxed{15 Thanks +Follow =Inbox}}}},,

,

<svg width="250" height="250" viewBox="0 0 100 100">\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ <path fill="pink" d="M92.71,7.27L92.71,7.27c-9.71-9.69-25.46-9.69-35.18,0L50,14.79l-7.54-7.52C32.75-2.42,17-2.42,7.29,7.27v0 c-9.71,9.69-9.71,25.41,0,35.1L50,85l42.71-42.63C102.43,32.68,102.43,16.96,92.71,7.27z"></path>\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ <animateTransform \ \textless \ br /\ \textgreater \ attributeName="transform" \ \textless \ br /\ \textgreater \ type="scale" \ \textless \ br /\ \textgreater \ values="1; 1.5; 1.25; 1.5; 1.5; 1;" \ \textless \ br /\ \textgreattexs \ dur="2s" \ \textless \ br /\ \textgreater \ repeatCount="40"> \ \textless \ br /\ \textgreater \ </animateTransform>\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ </svg>

Attachments:
Similar questions