find number of electron when quantum number is given
Answers
Answer:
where the quantum number is given???
Explanation:
Count the Full Orbitals
Subtract 1 from the first, or principle, quantum number. Since the orbitals must fill in order, this tells you number of orbitals that must already be full. For example, an atom with the quantum numbers 4,1,0 has a principal quantum number of 4. This means that 3 orbitals are already full.
Add the Electrons for Each Full Orbital
Add the maximum number of electrons that each full orbital can hold. Record this number for later use. For example, the first orbital can hold two electrons; the second, eight; and the third, 18. Therefore the three orbitals combined can hold 28 electrons.
Identify the Subshell Indicated by the Angular Quantum Number
Identify the subshell represented by the second, or angular, quantum number. The numbers 0 through 3 represent the "s", "p," "d" and "f" subshells, respectively. For example, 1 identifies a "p" subshell.
Add the Electrons from the Full Subshells
Add the maximum number of electrons that each previous subshell can hold. For example, if the quantum number indicates a "p" subshell (as in the example), add the electrons in the "s" subshell (2). However, if your angular quantum number was "d," you'd need to add the electrons contained in both the "s" and "p" subshells.
Add the Electrons from Full Subshells to Those From Full Orbitals
Add this number to the electrons contained in the lower orbitals. For example, 28 + 2 = 30.
Find the Legitimate Vales for the Magnetic Quantum Number
Determine how many orientations of the final subshell are possible by determining the range of legitimate values for the third, or magnetic, quantum number. If the angular quantum number equals "l," the magnetic quantum number can be any number between "l" and " −l," inclusive. For example, when the angular quantum number is 1, the magnetic quantum number may be 1, 0 or −1.
Count the Number of Possible Subshell Orientations
Count the number of possible subshell orientations up to and including the one that is indicated by the magnetic quantum number. Begin with the lowest number. For example, 0 represents the second possible orientation for the sublevel.
Add Two Electrons Per Possible Orientation to the Previous Sum
Add two electrons for each of the orientations to the previous electron sum. This is the total number of electrons an atom can contain up through this orbital. For example, since 30 + 2 + 2 = 34, an atom with a valence shell described by the numbers 4,1,0 holds a maximum of 34 electrons.