Math, asked by mukundkudli15, 9 months ago

find number of terms in the AP
a.25 , 30 , 35 , 40 , .......... 120​

Answers

Answered by Anonymous
7

To Find :

  • we need to find number of terms.

Given :

  • AP = 25 , 30 ,35 ,40 ......120

First term (a) = 25

common difference (d) = a2 - a1

  • a2 = 30
  • a1 = 25

= 30 - 25

= 5

  • a3 - a2
  • a3 = 35
  • a2 = 30

= 35 - 30

= 5

  • So, common difference (d) = 5

Last term = 120

we know that,

  • 《 an = a + (n - 1)d 》
  • an = 120
  • a = 25
  • d = 5
  • n = ?

⇛120 = 25 + (n - 1)5

⇛ 120 - 25 = 5n - 5

⇛ 95 = 5n - 5

⇛ 95 + 5 = 5n

⇛ 100 = 5n

⇛ n = 100/5

⇛ n = 20

Hence,

  • Number of term in given AP = 20

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
3

\huge\sf\pink{Answer}

☞ There are 20 terms innthe AP

━━━━━━━━━━━━━

\huge\sf\blue{Given}

✭ AP - 25,30,35,40..... 120

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ Number of terms in the AP?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

So here we shall use the formula,

\underline{\boxed{\red{\sf a_n = a+(n-1)d}}}

Here,

\sf a_n = 120

\sf a = 25

\sf d = a_2 - a_1

\sf d = 30-25 = 5

Substituting the given values,

\sf a_n = a+(n-1)d

\sf 120 = 25+(n-1)(5)

\sf 120-25 = (n-1)(5)

\sf 95 = (n-1)(5)

\sf \dfrac{95}{5} = n-1

\sf 19 = n-1

\sf 19+1 = n

\sf\orange{n = 20}

━━━━━━━━━━━━━━━━━━

Similar questions