Math, asked by selamlulu2222, 5 months ago

Find numbers a and k so that x-2 is a factor of f(x)=x^4-2ax^3+ax^2- x+k and f(-1)=3

Answers

Answered by khashrul
7

Answer:

a = \frac{16}{15} = 1\frac{1}{15}

k = -5\frac{1}{5}

Step-by-step explanation:

f(x) = x^4 - 2ax^3 + ax^2 - x + k

x - 2 is a factor:

(2)^4 - 2a(2)^3 + a(2)^2 - (2) + k = 0

=>16 - 16a + 4a + 2 + k = 0

=> -12a +  k =  - 18

=> 12a -  k =  18

k =  12a - 18 . . . . . . . . . . . . . . (i)

Also, given that, f(-1) = 3

(-1)^4 - 2a(-1)^3 + a(-1)^2 - (-1) + k = 0

=> 1 + 2a + a + 1 + k = 0

=> 3a + 12a - 18 = -2  [using equation (i)]

=> 15a = -2 + 18 = 16

a = \frac{16}{15} = 1\frac{1}{15}

k = 12a - 18 = 12. \frac{16}{15}  - 18 = \frac{64}{5} - 18 = \frac{64 - 90}{5} = -\frac{26}{5} = -5\frac{1}{5}

Similar questions