Find order of 6 in
(Z10,+)
Answers
Answered by
1
Step-by-step explanation:
Answer
LHS=cosA+sinA−1cosA−sinA+1
dividing Nr and Dr by sinA we get,
=sinAcosA+sinAsinA−sinA1sinAcosA−sinAsinA+sinA1
=cotA+1−cosecAcotA−1+cosecA
=cotA+1−cosecAcotA+cosecA−(cosec2A−cot2A)
=cotA+1−cosecA(cotA+cosecA)(1−cosecA+cotA)
=cotA+cosecA=RHS
Similar questions