Math, asked by meghanarouthu12345, 1 month ago

find orthogonal trajectory of r=a(sec teta+tan teta)​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given curve is

\bf :\longmapsto\:r = a(sec\theta + tan\theta) -  - (1)

On differentiating both sides, we get

\rm :\longmapsto\:\dfrac{dr}{d\theta} = a(sec\theta \: tan\theta + {sec}^{2}\theta)

\rm :\longmapsto\:\dfrac{dr}{d\theta} = a \: sec\theta \: (sec\theta + tan\theta)

\rm :\longmapsto\:\dfrac{dr}{d\theta} =  \: r \: sec\theta

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: using \: (1)\bigg \}}

\rm :\longmapsto\:Replace \: \dfrac{dr}{d\theta}  \: by \:  -  \:  {r}^{2}\dfrac{d\theta}{dr}

\rm :\longmapsto\:-  \:  {r}^{2}\dfrac{d\theta}{dr} = r \: sec\theta

\rm :\longmapsto\:-  \:  {r}\dfrac{d\theta}{dr} =  \: \dfrac{1}{cos\theta}

\rm :\longmapsto\: -  \: cos\theta \: d\theta = \dfrac{1}{r} dr

On integrating both sides, we get

 \displaystyle\rm :\longmapsto\: -  \int \: cos\theta \: d\theta = \int \:  \dfrac{1}{r} dr

\bf :\longmapsto\:c -  \: sin\theta = logr

\bf :\longmapsto\: \: sin\theta  +  logr  = c

is the required Orthogonal Trajectory.

Similar questions