Math, asked by Saicha2035, 14 hours ago

Find orthogonal trajectory of x^p +cy^p=1 where p is fixed constant​

Answers

Answered by shadowsabers03
11

Given,

\small\text{$\longrightarrow F:x^p+cy^p=1$}

The arbitrary constant c is given by,

\small\text{$\longrightarrow c=\dfrac{1-x^p}{y^p}$}

Differentiating our equation wrt x,

\small\text{$\longrightarrow px^{p-1}+cpy^{p-1}\cdot\dfrac{dy}{dx}=0$}

Putting the expression of c,

\small\text{$\longrightarrow px^{p-1}+\dfrac{1-x^p}{y^p}\cdot py^{p-1}\cdot\dfrac{dy}{dx}=0$}

\small\text{$\longrightarrow x^{p-1}+\dfrac{1-x^p}{y}\cdot\dfrac{dy}{dx}=0$}

Now we obtained the first order differential equation of our equation. We need to replace \small\text{$\dfrac{dy}{dx}$} by \small\text{$-\dfrac{dx}{dy}$} in this equation to obtain the orthogonal trajectory.

So,

\small\text{$\longrightarrow x^{p-1}-\dfrac{1-x^p}{y}\cdot\dfrac{dx}{dy}=0$}

\small\text{$\longrightarrow y\ dy=\dfrac{1-x^p}{x^{p-1}}\ dx$}

Integrating both sides,

\small\text{$\displaystyle\longrightarrow\int y\ dy=\int\left(x^{1-p}-x\right)\ dx\quad\dots(1)$}

Assume p ≠ 2. Then,

\small\text{$\longrightarrow\dfrac{y^2}{2}=\dfrac{x^{2-p}}{2-p}-\dfrac{x^2}{2}+c$}

\small\text{$\longrightarrow\dfrac{x^2+y^2}{2}+\dfrac{1}{(p-2)x^{p-2}}=c$}

If p = 2, then (1) becomes,

\small\text{$\displaystyle\longrightarrow\int y\ dy=\int\left(\dfrac{1}{x}-x\right)\ dx$}

\small\text{$\longrightarrow\dfrac{y^2}{2}=\ln|x|-\dfrac{x^2}{2}+c$}

\small\text{$\longrightarrow\dfrac{x^2+y^2}{2}-\ln|x|=c$}

Hence the orthogonal trajectory is,

\small\text{$\longrightarrow\underline{\underline{F_{\perp}:\left\{\begin{array}{lr}\dfrac{x^2+y^2}{2}+\dfrac{1}{(p-2)x^{p-2}}=c,&p\neq2\\\\\dfrac{x^2+y^2}{2}-\ln|x|=c,&p=2\end{array}\right.}}$}

Similar questions