Math, asked by muddy6539, 1 year ago

Find other zeros of 2x^4 -9x^3+5x^2 +3x if two of its zero are 2+root 3 and2-root 3

Answers

Answered by hukam0685
2

x = 2 +  \sqrt{3} \\( x - 2 -  \sqrt{3}) \: is \: a \: factor \\ x = 2 -  \sqrt{3}   \\( x - 2 +  \sqrt{3} ) \: is \: another \: factor \\ multiply \: both \: factors \\  =  {x}^{2}  - 4x + 4 - 3 \\  =  {x}^{2}  - 4x + 1 \\  2 {x}^{4}  - 9 {x}^{3}  + 5 {x}^{2}  + 3x = 0 \\ x(2 {x}^{3}  - 9 {x}^{2}  + 5x + 3) = 0 \\ x = 0 \: is \: 3rd \: zero \\ {x}^{2}  - 4x + 1)2 {x}^{3}  - 9 {x}^{2}  + 5x + 3(2x  - 1\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   2 {x}^{3}  - 8 {x}^{2}  + 2x \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: - \:  \:  \:  \:  \:  \:   +   \:  \:  \:  \:  \:  \:  \: -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -  {x}^{2}  + 3x + 3 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   -  {x}^{2}  + 4x + 1 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \:   +   \:  \:  \:  \:  \: -   \:  \:  \:  \:  \:  \:  \:  \:  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - x + 2
is remainder.
There is something wrong in this question,might you enter wrong polynomial,because if those are zeros of polynomial,then there must be 0 in the remainder.
check your question again.
the method I had mentioned you
Similar questions