Physics, asked by murari81, 1 year ago

Find out please????????????????????







Attachments:

Answers

Answered by nirman95
10

Answer:

Given:

Mass of planet is 20% more than that of Earth. The radius of that planet is 20% less than that of Earth.

To find:

Acceleration due to gravity on the planet

Calculation:

Gravitational acceleration is a Field Intensity vector directed towards the centre of the source.

Let gravitational force be F

 \boxed{ \sf{ \orange{F =  \dfrac{GMm}{ {r}^{2} }}}}

Now gravitational acceleration os force divided by mass of object (m)

 \boxed{ \sf{ \orange{g =  \dfrac{GM}{ {r}^{2} }}}}

Calculation:

Let mass of Earth be M and it's radius be r .

So, mass of planet is

 \sf{M2 = M \times  \dfrac{120}{100}}  =  \dfrac{6M}{5}

Radius of planet is

 \sf{r2 = r \times  \dfrac{80}{100} =  \dfrac{4r}{5} }

Now gravitational acceleration in that planet :

 \sf{ \red{g2 =  \dfrac{G( \dfrac{6M}{5} )}{ {( \dfrac{4r}{5} )}^{2} }}}

 \sf{ \red{\implies g2 =  \dfrac{GM}{ {r}^{2}   } \times  \dfrac{15}{8} }}

 \sf{ \red{\implies g2 = 9.8 \times  \dfrac{15}{8}}}

 \sf{ \red{\implies g2 = 18.375 \: m {s}^{ - 2}}}

So correct option is :

  \boxed{ \boxed{ \sf{ \large{ \bold{ \green{option \: b)}}}}}}

Answered by Anonymous
6

  \underline{\boxed{\mathfrak{ \huge{ \orange{AnSwEr}}}}} \\  \\  \dagger \: \:  \boxed {\blue{ \rm{Given}}}

Mass of planet is 20% more than that of earth.

The radius os that planet is 20% less than that of earth.

 \dagger \:  \:  \boxed{ \rm{ \blue{To \: Find}}}

Acceleration due to gravity of the planet

 \dagger \:  \:  \boxed{ \rm{ \blue{Formula}}}

Gravitational acceleration of any planet is given as

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underline{ \boxed{ \rm{ \pink{g =  \frac{GM}{ {R}^{2} }}}}}

where, M = mass of planet and R = radius of planet

let

M1 = mass of earth

M2 = mass of planet

R1 = radius of earth

R2 = radius of planet

g1 = gravitational acc. of earth

g2 = gravitational acc. of planet

As per question....

 \rm \: M{ \tiny{2}} = M{ \tiny{1}} +  \frac{20M{ \tiny{1}}}{100}  =  \frac{120M{ \tiny{1}}}{100}  =  \frac{6M{ \tiny{1}}}{5}  \\  \\  \rm \: R{ \tiny{2}} = R{ \tiny{1}} -  \frac{20R{ \tiny{1}}}{100}  =  \frac{80R{ \tiny{1}}}{100}  =  \frac{4R{ \tiny{1}}}{5}  \\  \\  \dagger  \:  \:  \boxed{ \rm{ \blue{Calculation}}}

gravitational acc. of planet is given as

 \leadsto \rm \: g{ \tiny{2}} =  \frac{GM{ \tiny{2}}}{ {R{ \tiny{2}}}^{2} }  =  \frac{g( \frac{6M{ \tiny{1}}}{5} )}{ ({ \frac{4R{ \tiny{1}}}{5} })^{2} }  =  \frac{15}{8}  \frac{gM{ \tiny{1}}}{ {R{ \tiny{1}}}^{2} }  \\  \\  \leadsto \rm \: g{ \tiny{2}} =  \frac{15}{8}  \times 9.8 = 18.375 \:  \frac{m}{ {s}^{2} }  \\  \\  \underline{ \boxed{ \rm{ \huge{ \orange{g{ \tiny{2}} = 18.375 \:  \frac{m}{ {s}^{2} } }}}}} \:  \: \red{ \huge{ \star}}

Similar questions