Economy, asked by goyalhimani14, 9 months ago

find out quartile deviation and coefficient of quartile deviation from the following data :
Class Interval
0-10
10-20
20-30
30-40
40-50
50-60
Frequency
4
8
5
4
9
10​

Answers

Answered by Anonymous
24

N = 40

\mathtt{Quartile\: deviation}

  \boxed{\mathtt{qd =  \frac{q3 - q1}{2} }} \\

\huge\mathtt{: ⟹ \:Q1}

 : ⟹ \: size \: of \:  \frac{n}{4} th \: term \\

 :⟹( \frac{40}{4} )th \: term \:  = 10th \: term \\

\mathtt{:⟹\: 10th \: term \: lies \: in \: group\: 10\: - \: 20}

 \boxed{q1 = l1 +  \frac{ \frac{n}{4}  - c.f}{f}  \times i }\\

Here

L1 = Lower limit of class interval

CF = cumulative frequency of the class preceding the first quartile class.

F = frequency of quartile class.

i = class interval.

 : ⟹\: q1 = 10 + ( \frac{10 - 4}{8} ).10 \\

 : ⟹10 +  \frac{60}{8}  \\

 \boxed{ : ⟹ \: 10 + 7.5 = 17.5 }\\

q3 = size \: of \: 3( \frac{n}{4} )th \: term \\

q3 =  \: 10 \times 3 = 30th \: term \\

30th \: term \: falls \: in \: 40 - 50 \: group \\

q3 = l1 +  \frac{3 \frac{n}{4}  - cf}{f} .i \\

L1 = 40

CF = 21

F = 9

i = 10

 : ⟹ \: 40 +  \frac{30 - 21}{9} .10 \\

  : ⟹ \boxed {q3 = 50} \\

 \boxed{ \huge{quartile \: deviai  tion}}

 : ⟹ \:  \frac{50 + 17.5}{2}  = 33.75 \\

 \huge{ \boxed{33.75}}

 \boxed{ \huge{coefficient }}

 : ⟹ \frac{q3 - q1}{q3 + q1}  \\

 : ⟹ \:  \frac{50 - 17.5}{50 + 17.5}  \\

 : ⟹ \frac{32.5}{67.5}  \\

 \huge{ \boxed{2.07}}

Attachments:
Similar questions