Math, asked by alifaakterbba, 11 months ago

find out the equation of a straight line which passes through the points( 2,6) (4,2). show the line in graph also​

Answers

Answered by Anonymous
9

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

find out the equation of a straight line which passes through the points( 2,6) (4,2). show the line in graph also .

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{\pink{Given}}}}}

  • First points A(2,6)
  • Second point B(4,2)

\Large{\underline{\mathfrak{\bf{\pink{Find}}}}}

  • Equation of straight line

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

We know,

Equation of straight Line,

\small\boxed{\sf{\blue{\:(y-y')\:=\:\dfrac{(y"-y')}{(x"-x')}(x-x')}}}

Where,

  • (x',y') = (2,6)
  • (x",y") = (4,2)

keep value ,

\mapsto\sf{\:(y-6)\:=\:\dfrac{(6-2)}{(4-2)}(x-2)} \\ \\ \mapsto\sf{\:(y-6)\:=\:\dfrac{4}{2}(x-2)} \\ \\ \mapsto\sf{\:(y-6)\:=\:-2(x-2)} \\ \\ \mapsto\sf{\:2x+y\:=\:6+4} \\ \\ \mapsto\sf{\:(2x+y)\:=\:10}

\large{\underline{\mathfrak{\bf{\pink{\:Required\:straight\:line}}}}}

\boxed{\sf{\blue{\:(2x+y)\:=\:10}}}

\large{\underline{\mathfrak{\bf{\pink{\:\:Formula\:of\:General\:straight\:line}}}}}

\boxed{\sf{\pink{\:y\:=\:mx+c}}}

We can write required equation in general equation,

\mapsto\sf{\blue{\:y\:=\:-2x+10}}

So, compare of required equation same as general equation,

\mapsto\sf{\:slope(m)\:=\:-2} \\ \\ \mapsto\sf{\:y\:intercept\:(c)\:=\:10}

Attachments:
Similar questions