Math, asked by AasthaThapa, 11 months ago

find out the lim of the given in the picture.​

Attachments:

Answers

Answered by bandanapandit65
1

Answer:

0

Step-by-step explanation:

cot x/4=cot45 =1

so,1-1/1+1-2=0/0=insoluble

Answered by pansumantarkm
0

Answer:

The value of the limit is : \frac{3}{4}

Step-by-step explanation:

\\lim_{x \to\frac{\pi }{4} } \frac{cot^{3}x-1 }{cot^{3}x+cotx-2 }

\lim_{x \to\frac{\pi }{4} }\frac{(cotx-1)(cot^{2}x+cotx+1) }{cot^{3}x-1+cotx-1 }    [∵x^{3}-y^{3}=(x-y)(x^{2}+xy+y^{2})]

\lim_{x \to\frac{\pi }{4} }\frac{(cotx-1)(cot^{2}x+cotx+1)}{(cotx-1)(cot^{2}x+cotx+1)+1(cotx-1)}

\lim_{x \to\frac{\pi }{4} }\frac{(cotx-1)(cot^{2}x+cotx+1)}{(cotx-1)(cot^{2}x+cotx+1+1)}

lim_{x \to\frac{\pi }{4} }\frac{(cot^{2}x+cotx+1)}{(cot^{2}x+cotx+2)}

now putting the limit, we get,

\frac{cot^{2}\frac{\pi }{4}+cot\frac{\pi }{4}+1}{cot^{2}\frac{\pi }{4}+cot\frac{\pi }{4}+2}

\frac{1+1+1}{1+1+2}       [∵cot\frac{\pi }{4}=1]

\frac{3}{4}

__________________________________

//Hope it will help you.

Please mark it as Brainliest//

Similar questions