Math, asked by rockzzsouvik, 5 months ago

Find out the maximum value of 1+8x-6x²​

Answers

Answered by Saatvik6565
2

Answer:

the Maximum value of a quadratic equation ax^{2} + bx + c is given as

Step-by-step explanation:

\frac{-D}{a}\\\\D = b^{2}-4ac\\\\D = (8)^{2}-4(1)(-6)\\\\D = 64+24\\\\D =88\\\\Now,\\\\\frac{-D}{4a} = \frac{-88}{4\times-6}\\\\= \frac{11}{3} = 3.\overline{6}

Answered by BrainlyPopularman
8

GIVEN :

• A function –

 \\  \implies\bf 1+8x-6x^{2}  \\

TO FIND :

• Maximum value of given function = ?

SOLUTION :

• Let the function –

 \\\implies\bf F(x) = 1+8x-6x^{2}  \\

• Differentiate with respect to 'x' –

 \\\implies\bf F'(x) = 8-(6 \times 2)x\\

 \\\implies\bf F'(x) = 8-12x\\

• For max/min –

 \\\implies\bf F'(x) =0\\

 \\\implies\bf 8 - 12x =0\\

 \\\implies\bf 8  = 12x \\

 \\\implies\bf x =  \dfrac{8}{12} \\

 \\\implies \large{ \boxed{\bf x =  \dfrac{2}{3}}} \\

• Now at x = ⅔ –

 \\\implies\bf F \bigg( \dfrac{2}{3} \bigg) = 1+8 \times \dfrac{2}{3} -6\bigg( \dfrac{2}{3} \bigg)^{2}  \\

 \\\implies\bf F \bigg( \dfrac{2}{3} \bigg) = 1+\dfrac{16}{3} -6\bigg( \dfrac{2}{3} \bigg)\bigg( \dfrac{2}{3} \bigg)\\

 \\\implies\bf F \bigg( \dfrac{2}{3} \bigg) = 1+\dfrac{16}{3} -\bigg( \dfrac{12}{3} \bigg)\bigg( \dfrac{2}{3} \bigg)\\

 \\\implies\bf F \bigg( \dfrac{2}{3} \bigg) = 1+\dfrac{16}{3} -4\bigg( \dfrac{2}{3} \bigg)\\

 \\\implies\bf F \bigg( \dfrac{2}{3} \bigg) = 1+\dfrac{16}{3} -\dfrac{8}{3}\\

 \\\implies\bf F \bigg( \dfrac{2}{3} \bigg) = 1+\dfrac{16 - 8}{3}\\

 \\\implies\bf F \bigg( \dfrac{2}{3} \bigg) = 1+\dfrac{8}{3}\\

 \\\implies\bf F \bigg( \dfrac{2}{3} \bigg) = \dfrac{3 + 8}{3}\\

 \\\implies \large{ \boxed{\bf F \bigg( \dfrac{2}{3} \bigg) = \dfrac{11}{3}}}\\

Hence , The maximum value is 11/3.


BrainlyHero420: Marvellous :D
BrainlyPopularman: Thanks
BrainlyPopularman: Thanks
Similar questions