Hindi, asked by ashujaguar5693, 1 year ago

Find out the value of a, b and c when 2(ab+bc+ca)=192 , abc=144 , (a^2+b^2+c^2)=169

Answers

Answered by parul682
4

Answer:

(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca

(a+b+c )^2=a^2+b^2+c^2+2

(ab+bc+ca)

putting the values

144^2=a^2+b^2+c^2+192

20736=a^2+b^2+c^2+192

a^2+b^2+c^2=20736-192=20644

Answered by isyllus
2

The value of a = 3 , b = 4 and c = 12

Explanation:

Given that,

2(ab+bc+ca)=192

abc=144

a^2+b^2+c^2=169

Using identity,

(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca

(a+b+c)^2=169+192

(a+b+c)^2=361

a+b+c=19

ab+bc+ca=96

abc=144

Let a, b and c be root of a cubic polynomial.

x^3-(\text{sum of root})x^2+(\text{sum of product of two zeros})x-\text{product of zeros}=0

x^3-(a+b+c)x^2+(ab+bc+ca)x-abc=0

Substitute the values

x^3-19x^2+96x-144=0

solve above equation

Zeros are:

a = 3

b = 4

c = 12

#Learn more:

https://brainly.in/question/2780994

Similar questions