find out the value of one digit
7 the power(95) - 3 power (58)
Answers
Answer:
7^95 - check the last digit pattern:
7^1 = 7
7^2 = 49
7^3 = 343
7^4 = 2401
7^5 = 16807 - the pattern already repeats. It repeats every 5th number exponent. So divide the exponent by 4. If the remainder is:
0 - last digit 1
1 - last digit 7
2 - last digit 9
3 - last digit 3
95 / 4 = 23 remainder 3. The last digit is 3
3^58 - check the last digit pattern.
3^1 = 3
3^2 = 9
3^3 = 27
3^4 = 81
3^5 = 243 It repeats every 5th number exponent. So divide the exponent by 4. If the remainder is:
0 - last digit 1
1 - last digit 3
2 - last digit 9
3 - last digit 7
58 / 4 = 14 R 2. The last digit is 9.
Solve the problem.
7^95 last digit is 3. 3^58 last digit is 9. 3 x 9 = 27. The last digit is 7. That's choice d.
3 x 9 = 27, The last digit is 7.
Step-by-step explanation:
7power -5
3 power -8 I hope this will help you