Math, asked by sushilavishwakarma33, 6 months ago

find out the value of sin2O if
sin2O+Cos2 O=1 ​

Answers

Answered by 0348950
0

Answer:f(θ)=  

2cos2θ

1−sin2θ+cos2θ

​  

 

=  

2cos2θ

(1+cos2θ)−sin2θ

​  

 

=  

2(cos  

2

θ−sin  

2

θ)

2cos  

2

θ−2sinθcosθ

​  

 

=  

2(cosθ−sinθ)(cosθ+sinθ)

2cosθ(cosθ−sinθ)

​  

 

=  

cosθ+sinθ

cosθ

​  

=  

1+tanθ

1

​  

 

now f(11  

)×f(34  

)=  

1+tan11  

 

1

​  

×  

1+tan34  

 

1

​  

 

=  

1+tan11  

 

1

​  

×  

1+tan(45  

−11  

)

1

​  

 

=  

1+tan11  

 

1

​  

×  

1+  

1+tan45  

tan11  

 

tan45  

−tan11  

 

​  

 

1

​  

 

=  

1+tan11  

 

1

​  

×  

1+  

1+tna11  

 

1−tan11  

 

​  

 

1

​  

=  

2

1

Step-by-step explanation:

Similar questions