find out the value of sin2O if
sin2O+Cos2 O=1
Answers
Answered by
0
Answer:f(θ)=
2cos2θ
1−sin2θ+cos2θ
=
2cos2θ
(1+cos2θ)−sin2θ
=
2(cos
2
θ−sin
2
θ)
2cos
2
θ−2sinθcosθ
=
2(cosθ−sinθ)(cosθ+sinθ)
2cosθ(cosθ−sinθ)
=
cosθ+sinθ
cosθ
=
1+tanθ
1
now f(11
∘
)×f(34
∘
)=
1+tan11
∘
1
×
1+tan34
∘
1
=
1+tan11
∘
1
×
1+tan(45
∘
−11
∘
)
1
=
1+tan11
∘
1
×
1+
1+tan45
∘
tan11
∘
tan45
∘
−tan11
∘
1
=
1+tan11
∘
1
×
1+
1+tna11
∘
1−tan11
∘
1
=
2
1
Step-by-step explanation:
Similar questions