Math, asked by bansalabhishek7644, 5 months ago

Find out whether the matrix is Symmetric or not. ​

Attachments:

Answers

Answered by Flaunt
16

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

Let A=\sf{\left[\begin{array}{c c c} 2&3&4\\ 3& 4&7\\4&7&8 \end{array}\right]}

To find whether the matrix is symmetric or not we need to prove A'=A if it satisfies then the given matrix is symmetric.

A'=Means transpose

Transpose means exchange the rows and columns.

A'=\sf{\left[\begin{array}{c c c} 2&3&4\\ 3& 4&7\\4&7&8 \end{array}\right]}

Here,A'=A

Hence ,it satisfies the condition.

\thereforeA=\sf{\left[\begin{array}{c c c} 2&3&4\\ 3& 4&7\\4&7&8 \end{array}\right]}is symmetric matrix.

Concept of transpose(A')

Let A=\sf{\left[\begin{array}{c c c} 1&2&3\\ 4& 5&6\\7&8&9\end{array}\right]}

Transpose (Exchanging rows and columns)

A'=\sf{\left[\begin{array}{c c c} 1&4&7\\ 2& 5&8\\3&6&9 \end{array}\right]}

Here,A' not equal to A so ,it is not a symmetric matrix.

Answered by Anonymous
0

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

Let A=\sf{\left[\begin{array}{c c c} 2&3&4\\ 3& 4&7\\4&7&8 \end{array}\right]}

To find whether the matrix is symmetric or not we need to prove A'=A if it satisfies then the given matrix is symmetric.

A'=Means transpose

Transpose means exchange the rows and columns.

A'=\sf{\left[\begin{array}{c c c} 2&3&4\\ 3& 4&7\\4&7&8 \end{array}\right]}

Here,A'=A

Hence ,it satisfies the condition.

\thereforeA=\sf{\left[\begin{array}{c c c} 2&3&4\\ 3& 4&7\\4&7&8 \end{array}\right]}is symmetric matrix.

Concept of transpose(A')

Let A=\sf{\left[\begin{array}{c c c} 1&2&3\\ 4& 5&6\\7&8&9\end{array}\right]}

Transpose (Exchanging rows and columns)

A'=\sf{\left[\begin{array}{c c c} 1&4&7\\ 2& 5&8\\3&6&9 \end{array}\right]}

Here,A' not equal to A so ,it is not a symmetric matrix.

Similar questions