. Find p(0),p(1) and p(2) for each of the following polynomials.
(1) p(x) = x^2-x+1
(2) p(y)=2 + y + 2y^2 - y^3
(3) p(z)=z^3
(4) p(t) = (t - 1) (t+1)
(5) P(x) = x^2 -3x+2
Answers
Step-by-step explanation:
(i) p(x) = x² - x + 1
⇒ p(0) = (0)² - (0) + 1
= 0 - 0 + 1
= 1
⇒ p(1) = (1)² - (1) + 1
= 1 - 1 + 1
= 1
⇒ p(2) = (2)² - 2 + 1
= 4 - 2 + 1
= 3
-------------------------------------------------------------------------------------------------------
(ii) p(y) = 2 + y + 2y² - y³
= -y³ + 2y² + y + 2
⇒ p(0) = (-0)³ + 2(0)² + 0 + 2
= -0 + 0 + 0 + 2
= 2
⇒ p(1) = (-1)³ + 2(1)² + 1 + 2
= -1 + 2 + 1 + 2
= 4
⇒ p(2) = (-2)³ + 2(2)² + 2
= -8 + 8 + 2 + 2
= 4
------------------------------------------------------------------------------------------------------
(iii) p(z) = z³
⇒ p(0) = (0)³
= 0
⇒ p(1) = (1)³
= 1
⇒ p(2) = (2)³
= 8
-----------------------------------------------------------------------------------------------------
(iv) p(t) = (t - 1)(t + 1)
⇒ p(0) = (0 - 1)(0 + 1)
= (-1)(1)
= -1
⇒ p(1) = (1 - 1)(1 + 1)
= (0)(2)
= 0
⇒ p(2) = (2 - 1)(2 + 1)
= (1)(3)
= 3
-------------------------------------------------------------------------------------------------------
(v) p(x) = x² - 3x + 2
⇒ p(0) = (0)² - 3(0) + 2
= 0 - 0 + 2
= 2
⇒ p(1) = (1)² - 3(1) + 2
= 1 - 3 + 2
= 0
⇒ p(2) = (2)² - 3(2) + 2
= 4 - 6 + 2
= 0
Step-by-step explanation:
1) 1 , 1 , 3
2) 2 , 2, 4
3) 0 , 1 , 8
4) -1 , 0 , 3
5) 2 , 0 , 0