Math, asked by gaur00657, 1 month ago

Find p(0), p(1) and p(2) for each of the following polynomials:
(i) P(y) = y^2 – y+1
(ii) p(t)=2+t+2t^2-t^3
(i) p(x)= x^3
(iv) p(x)=(x - 1) (x + 1)​

Answers

Answered by BlessedOne
15

Concept :

For calculating p(0) , p(1) and p(2) of any of the given polynomial we just need to substitute 0 , 1 oR 2 in place of the variable in a polynomial. Doing so and proceeding with simple calculation we will end up getting our required answers.

═══════ ⌇ ═══════‎

Question 1 :

⠀⠀⠀⌬ p(y) = y² - y + 1

Solution :

\sf\:p(y)=y^{2}-y+1

Calculating p(0) by plugging 0 in place of y -

\sf\leadsto\:p(0)=0^{2}-0+1

\sf\leadsto\:p(0)=0-0+1

\sf\leadsto\:p(0)=\cancel{0}-\cancel{0}+1

\small{\underline{\boxed{\mathrm{\leadsto\:p(0)=1}}}} \sf\color{purple}{⋆}

Calculating p(1) by plugging 1 in place of y -

\sf\leadsto\:p(1)=1^{2}-1+1

\sf\leadsto\:p(1)=1-1+1

\sf\leadsto\:p(1)=\cancel{1}-\cancel{1}+1

\small{\underline{\boxed{\mathrm{\leadsto\:p(1)=1}}}} \sf\color{purple}{⋆}

Calculating p(2) by plugging 2 in place of y -

\sf\leadsto\:p(2)=2^{2}-2+1

\sf\leadsto\:p(2)=4-2+1

\sf\leadsto\:p(2)=2+1

\small{\underline{\boxed{\mathrm{\leadsto\:p(2)=3}}}} \sf\color{purple}{⋆}

════════════════════════‎

Question 2 :‎

⠀⠀⠀⌬ p(t) = 2 + t + 2t² - t³

Solution :

\sf\:p(t)=2+t+2t^{2}-t^{3}

Calculating p(0) by plugging 0 in place of t -

\sf\leadsto\:p(0)=2+0+2 \times 0^{2}-0^{3}

\sf\leadsto\:p(0)=2+0+2 \times 0-0

\sf\leadsto\:p(0)=2+0-0

\sf\leadsto\:p(0)=2+\cancel{0}-\cancel{0}

\small{\underline{\boxed{\mathrm{\leadsto\:p(0)=2}}}} \sf\color{purple}{⋆}

Calculating p(1) by plugging 1 in place of t -

\sf\leadsto\:p(1)=2+1+2 \times 1^{2}-1^{3}

\sf\leadsto\:p(1)=2+1+2 \times 1-1

\sf\leadsto\:p(1)=2+1+2-1

\sf\leadsto\:p(1)=3+2-1

\sf\leadsto\:p(1)=5-1

\small{\underline{\boxed{\mathrm{\leadsto\:p(1)=4}}}} \sf\color{purple}{⋆}

Calculating p(2) by plugging 2 in place of t -

\sf\leadsto\:p(2)=2+2+2 \times 2^{2}-2^{3}

\sf\leadsto\:p(2)=2+2+2 \times 4-8

\sf\leadsto\:p(2)=4+8-8

\sf\leadsto\:p(2)=12-8

\small{\underline{\boxed{\mathrm{\leadsto\:p(2)=4}}}} \sf\color{purple}{⋆}

════════════════════════

Question 3 :‎

⠀⠀⠀⌬ p(x) = x³

Solution :

\sf\:p(x)=x^{3}

Calculating p(0) by plugging 0 in place of x -

\sf\leadsto\:p(0)=0^{3}

\small{\underline{\boxed{\mathrm{\leadsto\:p(0)=0}}}} \sf\color{purple}{⋆}

Calculating p(1) by plugging 1 in place of x -

\sf\leadsto\:p(1)=1^{3}

\small{\underline{\boxed{\mathrm{\leadsto\:p(1)=1}}}} \sf\color{purple}{⋆}

Calculating p(2) by plugging 2 in place of x -

\sf\leadsto\:p(2)=2^{3}

\small{\underline{\boxed{\mathrm{\leadsto\:p(2)=8}}}} \sf\color{purple}{⋆}

════════════════════════

Question 4 :

⠀⠀⠀⌬ p(x) = ( x-1 ) ( x+1 )

Solution :

\sf\:p(x)=(x-1)(x+1)

Calculating p(0) by plugging 0 in place of x -

\sf\leadsto\:p(0)=(0-1)(0+1)

\sf\leadsto\:p(0)=(-1)(1)

\sf\leadsto\:p(0)=(-1) \times 1

\small{\underline{\boxed{\mathrm{\leadsto\:p(0)=(-1)}}}} \sf\color{purple}{⋆}

Calculating p(1) by plugging 1 in place of x -

\sf\leadsto\:p(1)=(1-1)(1+1)

\sf\leadsto\:p(1)=(0)(2)

\sf\leadsto\:p(1)=0 \times 2

\small{\underline{\boxed{\mathrm{\leadsto\:p(1)=0}}}} \sf\color{purple}{⋆}

Calculating p(2) by plugging 2 in place of x -

\sf\leadsto\:p(2)=(2-1)(2+1)

\sf\leadsto\:p(2)=(1)(3)

\sf\leadsto\:p(2)=1 \times 3

\small{\underline{\boxed{\mathrm{\leadsto\:p(2)=3}}}} \sf\color{purple}{⋆}

════════════════════════

Similar questions