find p ( 11 ), p ( 12 ) where pp ( n ) denotes the number of partitions of n
Answers
Answered by
1
The
partitions of 11 are:
The answer seems to be the sum of 1, 1, 2, 3, 5, 7, 11, 11, 10, 5, 1 = 57 and in standard websites, the p(11) is given as 56.
11
10 + 1
9 + 1 + 1 or 9 + 2
8 + 1 + 1 + 1 or 8 + 1 + 2 or 8 + 3
7 + 1 + 1 + 1 + 1 or 7 + 2 + 1 + 1 or 7 + 2 + 2 or 7 + 3 + 1 or 7 + 4
6+1+1+1+1+1, 6+2+1+1+1, 6+2+2+1, 6+3+2, 6+3+1+1,6+4+1, 6+5
5+1+1+1+1+1+1, 5+2+1+1+1+1, 5+2+2+1+1, 5+2+2+2, 5+3+1+1+1,
5+3+2+1, 5 +3+3, 5+4+1+1, 5+4+2, 5+5+1, 5+6
4+1+1+1+1+1+1+1, 4+2+1+1+1+1+1, 4+2+2+1+1+1, 4+2+2+2+1,
4+3+1+1+1+1, 4+3+2+1+1, 4+3+2+2, 4+3+3+1, 4+4+1+1+1, 4+4+2+1,
4+4+3, we haven’t 4+5+2, 4+5+1+1, 4+6+1, 4+7
3+1+1+1+1+1+1+1, 3+2+1+1+1+1+1+1, 3+2+2+1+1+1+1, 3+2+2+2+1+1,
3+2+2+2+2, 3+3+1+1+1+1+1, 3+3+2+1+1+1, 3+3+2+2+1, 3+3+3+2, 3+3+3+1+1,
we haven’t 4+4+3, 4+3+1+1+1+1, 4+3+2+1+1, 4+3+2+2, 4+3+3+1, 5+3+1+2, 5 +3+3, 5+3+1+1+1, , 6+3+2, 6+3+1+1, 7+3+1, 8+3
2+2+2+2+2+1,2+2+2+2+1+1+1, 2+2+2+1+1+1+1+1, 2+2+1+1+1+1+1+1+1, 2+1+1+1+1+1+1+1+1+1,
1+1+1+1+1+1+1+1+1+1+1
p(11) = 56 or 57 by enumerating all possibilities.
==========================
By partition theorem:
g(i) = (3 i² - i) / 2 = Euler's pentagonal number
[tex]Partition(n) = \Sigma_i (-1)^{i+1} * Partition(n - g(i)) [/tex]
for all i positive and negative except 0.
g(-4) = 25, g(-3) = 15, g(-2) = 7, g(-1) = 2 , g(1) = 1, g(2) = 5, g(3) = 12, g(4) = 22
Partition(11) = ...- Part(11-25) + Part(11-15) - Part(11-7) + Part(11 -2) + part(11-1) - Part(11-5) + part(11-12) - Part(11-22) + ....
Partition (11) = 0+...+0 + 0 - Part(4) + Part(9) +Part(10) - Part(6) + 0 - 0 +...
p(11) = p(9) + p(10) - p(4) - p(6) = 56
p(10) = p(9) + p(8) - p(3) - p(5) = 42
p(9) = p(8) + p(7) - p(4) - p(2) = 30
p(8) = p(7)+p(6)- p(3)- p(1) = 22
p(7) = p(6)+p(5) - p(2) - p(0) = 15
p(6) = p(5)+p(4) - p(1) = 11
p(5) = p(4+p(3) - p(0) = 7
p(4) = p(3)+p(2) = 5 as P(4) = {1+1+1+1, 1+2+1, 2+1, 3+1 ,4}
p(3) = p(2)+p(1) = 3 as P(3) = { 1+1+1 , 1+2 , 3}
p(2) = p(1)+p(0) = 2 as P(2) = set { 1+1, 2 }
p(1) = 1 as P(1) = {1 }
p(0) = 1 by definition
p(i) = 0 for all i negative.
==================
p(12) = p(11) + p(10) - p(7) - p(5) + p(0)
= 56 + 42 - 15 - 7 + 1
= 77
==========================
The answer seems to be the sum of 1, 1, 2, 3, 5, 7, 11, 11, 10, 5, 1 = 57 and in standard websites, the p(11) is given as 56.
11
10 + 1
9 + 1 + 1 or 9 + 2
8 + 1 + 1 + 1 or 8 + 1 + 2 or 8 + 3
7 + 1 + 1 + 1 + 1 or 7 + 2 + 1 + 1 or 7 + 2 + 2 or 7 + 3 + 1 or 7 + 4
6+1+1+1+1+1, 6+2+1+1+1, 6+2+2+1, 6+3+2, 6+3+1+1,6+4+1, 6+5
5+1+1+1+1+1+1, 5+2+1+1+1+1, 5+2+2+1+1, 5+2+2+2, 5+3+1+1+1,
5+3+2+1, 5 +3+3, 5+4+1+1, 5+4+2, 5+5+1, 5+6
4+1+1+1+1+1+1+1, 4+2+1+1+1+1+1, 4+2+2+1+1+1, 4+2+2+2+1,
4+3+1+1+1+1, 4+3+2+1+1, 4+3+2+2, 4+3+3+1, 4+4+1+1+1, 4+4+2+1,
4+4+3, we haven’t 4+5+2, 4+5+1+1, 4+6+1, 4+7
3+1+1+1+1+1+1+1, 3+2+1+1+1+1+1+1, 3+2+2+1+1+1+1, 3+2+2+2+1+1,
3+2+2+2+2, 3+3+1+1+1+1+1, 3+3+2+1+1+1, 3+3+2+2+1, 3+3+3+2, 3+3+3+1+1,
we haven’t 4+4+3, 4+3+1+1+1+1, 4+3+2+1+1, 4+3+2+2, 4+3+3+1, 5+3+1+2, 5 +3+3, 5+3+1+1+1, , 6+3+2, 6+3+1+1, 7+3+1, 8+3
2+2+2+2+2+1,2+2+2+2+1+1+1, 2+2+2+1+1+1+1+1, 2+2+1+1+1+1+1+1+1, 2+1+1+1+1+1+1+1+1+1,
1+1+1+1+1+1+1+1+1+1+1
p(11) = 56 or 57 by enumerating all possibilities.
==========================
By partition theorem:
g(i) = (3 i² - i) / 2 = Euler's pentagonal number
[tex]Partition(n) = \Sigma_i (-1)^{i+1} * Partition(n - g(i)) [/tex]
for all i positive and negative except 0.
g(-4) = 25, g(-3) = 15, g(-2) = 7, g(-1) = 2 , g(1) = 1, g(2) = 5, g(3) = 12, g(4) = 22
Partition(11) = ...- Part(11-25) + Part(11-15) - Part(11-7) + Part(11 -2) + part(11-1) - Part(11-5) + part(11-12) - Part(11-22) + ....
Partition (11) = 0+...+0 + 0 - Part(4) + Part(9) +Part(10) - Part(6) + 0 - 0 +...
p(11) = p(9) + p(10) - p(4) - p(6) = 56
p(10) = p(9) + p(8) - p(3) - p(5) = 42
p(9) = p(8) + p(7) - p(4) - p(2) = 30
p(8) = p(7)+p(6)- p(3)- p(1) = 22
p(7) = p(6)+p(5) - p(2) - p(0) = 15
p(6) = p(5)+p(4) - p(1) = 11
p(5) = p(4+p(3) - p(0) = 7
p(4) = p(3)+p(2) = 5 as P(4) = {1+1+1+1, 1+2+1, 2+1, 3+1 ,4}
p(3) = p(2)+p(1) = 3 as P(3) = { 1+1+1 , 1+2 , 3}
p(2) = p(1)+p(0) = 2 as P(2) = set { 1+1, 2 }
p(1) = 1 as P(1) = {1 }
p(0) = 1 by definition
p(i) = 0 for all i negative.
==================
p(12) = p(11) + p(10) - p(7) - p(5) + p(0)
= 56 + 42 - 15 - 7 + 1
= 77
==========================
kvnmurty:
please click on thanks blue button above
Answered by
0
The answer seems to be the sum of 1, 1, 2, 3, 5, 7, 11, 11, 10, 5, 1 = 57 and in standard websites, the p(11) is given as 56.
11
10 + 1
9 + 1 + 1 or 9 + 2
8 + 1 + 1 + 1 or 8 + 1 + 2 or 8 + 3
7 + 1 + 1 + 1 + 1 or 7 + 2 + 1 + 1 or 7 + 2 + 2 or 7 + 3 + 1 or 7 + 4
6+1+1+1+1+1, 6+2+1+1+1, 6+2+2+1, 6+3+2, 6+3+1+1,6+4+1, 6+5
5+1+1+1+1+1+1, 5+2+1+1+1+1, 5+2+2+1+1, 5+2+2+2, 5+3+1+1+1,
5+3+2+1, 5 +3+3, 5+4+1+1, 5+4+2, 5+5+1, 5+6
4+1+1+1+1+1+1+1, 4+2+1+1+1+1+1, 4+2+2+1+1+1, 4+2+2+2+1,
4+3+1+1+1+1, 4+3+2+1+1, 4+3+2+2, 4+3+3+1, 4+4+1+1+1, 4+4+2+1,
4+4+3, we haven’t 4+5+2, 4+5+1+1, 4+6+1, 4+7
3+1+1+1+1+1+1+1, 3+2+1+1+1+1+1+1, 3+2+2+1+1+1+1, 3+2+2+2+1+1,
3+2+2+2+2, 3+3+1+1+1+1+1, 3+3+2+1+1+1, 3+3+2+2+1, 3+3+3+2, 3+3+3+1+1,
we haven’t 4+4+3, 4+3+1+1+1+1, 4+3+2+1+1, 4+3+2+2, 4+3+3+1, 5+3+1+2, 5 +3+3, 5+3+1+1+1, , 6+3+2, 6+3+1+1, 7+3+1, 8+3
2+2+2+2+2+1,2+2+2+2+1+1+1, 2+2+2+1+1+1+1+1, 2+2+1+1+1+1+1+1+1, 2+1+1+1+1+1+1+1+1+1,
1+1+1+1+1+1+1+1+1+1+1
p(11) = 56 or 57 by enumerating all possibilities.
==========================
By partition theorem:
g(i) = (3 i² - i) / 2 = Euler's pentagonal number
for all i positive and negative except 0.
g(-4) = 25, g(-3) = 15, g(-2) = 7, g(-1) = 2 , g(1) = 1, g(2) = 5, g(3) = 12, g(4) = 22
Partition(11) = ...- Part(11-25) + Part(11-15) - Part(11-7) + Part(11 -2) + part(11-1) - Part(11-5) + part(11-12) - Part(11-22) + ....
Partition (11) = 0+...+0 + 0 - Part(4) + Part(9) +Part(10) - Part(6) + 0 - 0 +...
p(11) = p(9) + p(10) - p(4) - p(6) = 56
p(10) = p(9) + p(8) - p(3) - p(5) = 42
p(9) = p(8) + p(7) - p(4) - p(2) = 30
p(8) = p(7)+p(6)- p(3)- p(1) = 22
p(7) = p(6)+p(5) - p(2) - p(0) = 15
p(6) = p(5)+p(4) - p(1) = 11
p(5) = p(4+p(3) - p(0) = 7
p(4) = p(3)+p(2) = 5 as P(4) = {1+1+1+1, 1+2+1, 2+1, 3+1 ,4}
p(3) = p(2)+p(1) = 3 as P(3) = { 1+1+1 , 1+2 , 3}
p(2) = p(1)+p(0) = 2 as P(2) = set { 1+1, 2 }
p(1) = 1 as P(1) = {1 }
p(0) = 1 by definition
p(i) = 0 for all i negative.
==================
p(12) = p(11) + p(10) - p(7) - p(5) + p(0)
= 56 + 42 - 15 - 7 + 1
= 77
11
10 + 1
9 + 1 + 1 or 9 + 2
8 + 1 + 1 + 1 or 8 + 1 + 2 or 8 + 3
7 + 1 + 1 + 1 + 1 or 7 + 2 + 1 + 1 or 7 + 2 + 2 or 7 + 3 + 1 or 7 + 4
6+1+1+1+1+1, 6+2+1+1+1, 6+2+2+1, 6+3+2, 6+3+1+1,6+4+1, 6+5
5+1+1+1+1+1+1, 5+2+1+1+1+1, 5+2+2+1+1, 5+2+2+2, 5+3+1+1+1,
5+3+2+1, 5 +3+3, 5+4+1+1, 5+4+2, 5+5+1, 5+6
4+1+1+1+1+1+1+1, 4+2+1+1+1+1+1, 4+2+2+1+1+1, 4+2+2+2+1,
4+3+1+1+1+1, 4+3+2+1+1, 4+3+2+2, 4+3+3+1, 4+4+1+1+1, 4+4+2+1,
4+4+3, we haven’t 4+5+2, 4+5+1+1, 4+6+1, 4+7
3+1+1+1+1+1+1+1, 3+2+1+1+1+1+1+1, 3+2+2+1+1+1+1, 3+2+2+2+1+1,
3+2+2+2+2, 3+3+1+1+1+1+1, 3+3+2+1+1+1, 3+3+2+2+1, 3+3+3+2, 3+3+3+1+1,
we haven’t 4+4+3, 4+3+1+1+1+1, 4+3+2+1+1, 4+3+2+2, 4+3+3+1, 5+3+1+2, 5 +3+3, 5+3+1+1+1, , 6+3+2, 6+3+1+1, 7+3+1, 8+3
2+2+2+2+2+1,2+2+2+2+1+1+1, 2+2+2+1+1+1+1+1, 2+2+1+1+1+1+1+1+1, 2+1+1+1+1+1+1+1+1+1,
1+1+1+1+1+1+1+1+1+1+1
p(11) = 56 or 57 by enumerating all possibilities.
==========================
By partition theorem:
g(i) = (3 i² - i) / 2 = Euler's pentagonal number
for all i positive and negative except 0.
g(-4) = 25, g(-3) = 15, g(-2) = 7, g(-1) = 2 , g(1) = 1, g(2) = 5, g(3) = 12, g(4) = 22
Partition(11) = ...- Part(11-25) + Part(11-15) - Part(11-7) + Part(11 -2) + part(11-1) - Part(11-5) + part(11-12) - Part(11-22) + ....
Partition (11) = 0+...+0 + 0 - Part(4) + Part(9) +Part(10) - Part(6) + 0 - 0 +...
p(11) = p(9) + p(10) - p(4) - p(6) = 56
p(10) = p(9) + p(8) - p(3) - p(5) = 42
p(9) = p(8) + p(7) - p(4) - p(2) = 30
p(8) = p(7)+p(6)- p(3)- p(1) = 22
p(7) = p(6)+p(5) - p(2) - p(0) = 15
p(6) = p(5)+p(4) - p(1) = 11
p(5) = p(4+p(3) - p(0) = 7
p(4) = p(3)+p(2) = 5 as P(4) = {1+1+1+1, 1+2+1, 2+1, 3+1 ,4}
p(3) = p(2)+p(1) = 3 as P(3) = { 1+1+1 , 1+2 , 3}
p(2) = p(1)+p(0) = 2 as P(2) = set { 1+1, 2 }
p(1) = 1 as P(1) = {1 }
p(0) = 1 by definition
p(i) = 0 for all i negative.
==================
p(12) = p(11) + p(10) - p(7) - p(5) + p(0)
= 56 + 42 - 15 - 7 + 1
= 77
Similar questions