Math, asked by kmahalakshime, 3 months ago

find p (2) and p(--2) of the polynomialp+=2+t+²_t³​

Answers

Answered by sainarendracdm
1

(ii) p(t)=2+t+2t

(ii) p(t)=2+t+2t 2

(ii) p(t)=2+t+2t 2 −t

(ii) p(t)=2+t+2t 2 −t 3

(ii) p(t)=2+t+2t 2 −t 3

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0)

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2 −t

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2 −t 3

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2 −t 3 =2+0+0−0=2

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2 −t 3 =2+0+0−0=2p(1)=2+(1)+2(2)

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2 −t 3 =2+0+0−0=2p(1)=2+(1)+2(2) 2

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2 −t 3 =2+0+0−0=2p(1)=2+(1)+2(2) 2 −(1)

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2 −t 3 =2+0+0−0=2p(1)=2+(1)+2(2) 2 −(1) 3

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2 −t 3 =2+0+0−0=2p(1)=2+(1)+2(2) 2 −(1) 3 =2+1+2−1=4

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2 −t 3 =2+0+0−0=2p(1)=2+(1)+2(2) 2 −(1) 3 =2+1+2−1=4p(2)=2+(2)+2(2)

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2 −t 3 =2+0+0−0=2p(1)=2+(1)+2(2) 2 −(1) 3 =2+1+2−1=4p(2)=2+(2)+2(2) 2

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2 −t 3 =2+0+0−0=2p(1)=2+(1)+2(2) 2 −(1) 3 =2+1+2−1=4p(2)=2+(2)+2(2) 2 −(2)

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2 −t 3 =2+0+0−0=2p(1)=2+(1)+2(2) 2 −(1) 3 =2+1+2−1=4p(2)=2+(2)+2(2) 2 −(2) 3

(ii) p(t)=2+t+2t 2 −t 3 p(0)=2+(0)+2(0) 2 −t 3 =2+0+0−0=2p(1)=2+(1)+2(2) 2 −(1) 3 =2+1+2−1=4p(2)=2+(2)+2(2) 2 −(2) 3 =2+2+8−8=4

I HOPE THIS WILL HELP YOU MATE

Similar questions