Math, asked by AparnaBahuguna, 1 year ago

find p (-4/65) for p(x)= x2 + 2x +1

Answers

Answered by Anonymous
11
Given polynomial :

p(x)= x2 + 2x +1

To find :

p (-4/65)

Answer : It is -29559/4225

For full solution refer to the above attachment !!

#Be Brainly !!
Attachments:
Answered by MOSFET01
7

\bold{\underline{Solution\: \colon}}



\bold{\underline{Given\: \colon}}



\bold{p(x) = x^{2} \: + \: 2x \: + \: 1}



\bold{\underline{To \: Find\: \colon}}



\bold{p\Bigg(\dfrac{-4}{65}\Bigg)}



\bold{\underline{Solution\: Steps \: \colon}}



We have,



\bold{p(x) = x^{2} \: + \: 2x \: + \: 1}



Now put



\bold{p\Bigg(\dfrac{-4}{65}\Bigg)}



\bold{\large{1)\:p\Bigg(\dfrac{-4}{65}\Bigg)\: = \:\Bigg(\dfrac{-4}{65}\Bigg)^{2} \: + \: 2\Bigg(\dfrac{-4}{65}\Bigg) \: + 1}}



\bold{\large{\implies \dfrac{16}{4225} - \dfrac{8}{65} +1}}



\bold{\large{\implies \dfrac{ 16 - 8 \times 65 + 4225}{4225}}}



\bold{\large{\implies \dfrac{ 16 - 520 + 4225}{4225}}}



\bold{\large{\implies \dfrac{4241-520 }{4225}}}



\bold{\large{\implies \dfrac{3721}{4225}}}



\bold{\large{Thanks}}

Similar questions