Math, asked by unknowny7064, 5 hours ago

find p and q if 7 + root 5 by 7 minus root 5 minus 7 minus root 5 by 7 + root 5 is equals to p - 7 root 5 q​

Answers

Answered by amansharma264
61

EXPLANATION.

\implies \dfrac{7 + \sqrt{5} }{7 - \sqrt{5} } - \dfrac{7 - \sqrt{5} }{7 + \sqrt{5}  }  = p - 7\sqrt{5} q

As we know that,

Rationalizes the equation one by one, we get.

\implies \dfrac{7 + \sqrt{5} }{7 - \sqrt{5} }

\implies \dfrac{7 + \sqrt{5} }{7 - \sqrt{5} } \times \dfrac{7 + \sqrt{5} }{7 + \sqrt{5} }

\implies \dfrac{(7 + \sqrt{5} )^{2} }{(7)^{2} - (\sqrt{5})^{2} }

\implies \dfrac{49 + 5 + 2 \times 7 \times \sqrt{5} }{49 - 5}

\implies \dfrac{54 + 14\sqrt{5} }{44}

\implies \dfrac{7 - \sqrt{5} }{7 + \sqrt{5} }

\implies \dfrac{7 - \sqrt{5} }{7 + \sqrt{5} } \times \dfrac{7 - \sqrt{5} }{7 - \sqrt{5} }

\implies \dfrac{(7 - \sqrt{5} )^{2} }{(7)^{2} - (\sqrt{5})^{2} }

\implies \dfrac{49 + 5 - 2 \times 7 \times \sqrt{5} }{49 - 5}

\implies \dfrac{54 - 14\sqrt{5} }{44}

We can write equation as,

\implies \dfrac{54 + 14\sqrt{5} }{44} -  \dfrac{54 - 14\sqrt{5} }{44}

\implies \dfrac{54 + 14\sqrt{5} - 54 + 14\sqrt{5} }{44}

\implies \dfrac{14\sqrt{5} + 14\sqrt{5} }{44} = p - 7\sqrt{5} q

\implies \dfrac{28\sqrt{5} }{44} = p - 7\sqrt{5} q

\implies \dfrac{7\sqrt{5} }{11} = p - 7\sqrt{5} q

\implies p = 0 \ \ \ and \ \ \ q = \dfrac{-1}{11}

Answered by MяMαgıcıαη
107

\large\underline{\sf{\red{Given}}}

\sf \dfrac{7 + \sqrt{5}}{7 - \sqrt{5}} - \dfrac{7 - \sqrt{5}}{7 + \sqrt{5}} = p - 7\sqrt{5}q

\large\underline{\sf{\blue{To\:Find}}}

\sf Value\:of\:p\:and\:q?

\large\underline{\sf{\green{Solution}}}

Things to know before solving this question,

\underline{\boxed{\sf{(a + b)(a - b) = a^2 - b^2}}}

\underline{\boxed{\sf{(a + b)^2 = a^2 + b^2 + 2ab}}}

\underline{\boxed{\sf{(a - b)^2 = a^2 + b^2 - 2ab}}}

━━━━━━━

\underline{\sf{\bigstar\:Rationalising\:the\:denominator\:of\:\frac{7 + \sqrt{5}}{7 - \sqrt{5}}\::}}

\sf \dfrac{7 + \sqrt{5}}{7 - \sqrt{5}} \:\times\:\dfrac{7 + \sqrt{5}}{7 + \sqrt{5}}

\sf \dfrac{(7 + \sqrt{5})^2}{(7)^2 - (\sqrt{5})^2}

\sf \dfrac{(7)^2 + (\sqrt{5})^2 + 2(7)(\sqrt{5})}{49 - 5}

\sf \dfrac{49 + 5 + 14\sqrt{5}}{44}

\sf\pink{\dfrac{54 + 14\sqrt{5}}{44}}

\underline{\sf{\bigstar\:Rationalising\:the\:denominator\:of\:\frac{7 - \sqrt{5}}{7 + \sqrt{5}}\::}}

\sf \dfrac{7 - \sqrt{5}}{7 + \sqrt{5}} \:\times\:\dfrac{7 - \sqrt{5}}{7 - \sqrt{5}}

\sf \dfrac{(7 - \sqrt{5})^2}{(7)^2 - (\sqrt{5})^2}

\sf \dfrac{(7)^2 + (\sqrt{5})^2 - 2(7)(\sqrt{5})}{49 - 5}

\sf \dfrac{49 + 5 - 14\sqrt{5}}{44}

\sf\pink{\dfrac{54 - 14\sqrt{5}}{44}}

So, equation is,

\sf \dashrightarrow\:\dfrac{54 + 14\sqrt{5}}{44} - \dfrac{54 - 14\sqrt{5}}{44} = p - 7\sqrt{5}q

Calculating value of p and q,

\sf \dashrightarrow\:\dfrac{54 + 14\sqrt{5} - (54 - 14\sqrt{5})}{44} = p - 7\sqrt{5}q

\sf \dashrightarrow\:\dfrac{54 + 14\sqrt{5} - 54 + 14\sqrt{5}}{44} = p - 7\sqrt{5}q

\sf \dashrightarrow\:\dfrac{54 - 54 + 14\sqrt{5} + 14\sqrt{5}}{44} = p - 7\sqrt{5}q

\sf \dashrightarrow\:\dfrac{(14 + 14)\sqrt{5}}{44} = p - 7\sqrt{5}q

\sf \dashrightarrow\:\dfrac{28\sqrt{5}}{44} = p - 7\sqrt{5}q

\sf \dashrightarrow\:\dfrac{\cancel{28}\sqrt{5}}{\cancel{44}} = p - 7\sqrt{5}q

\sf \dashrightarrow\:\dfrac{7\sqrt{5}}{11} = p - 7\sqrt{5}q

\dashrightarrow\:\sf \pink{p = 0}\:and\:\pink{q = \dfrac{-1}{11}}

\therefore\:{\underline{\sf{Value\:of\:p\:and\:q\:=\:\bf{0}\:\sf{and}\:\bf{\dfrac{-1}{11}}}}}

━━━━━━━━━━━━━━━

Similar questions