Math, asked by noopur43, 1 year ago

find p and q if p and q are two positive no. and p + q=988 and p- q =29​
please give the ans fast with explaination

Answers

Answered by BrainlyConqueror0901
63

Answer:

\huge{\pink{\boxed{\green{\sf{p=\frac{1017}{2}}}}}}

\huge{\pink{\boxed{\green{\sf{q=\frac{959}{2}}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  \:  \:  \: { \orange{given}} \\ { \pink{ \boxed{ \green{p + q = 988}}}} \\ { \pink{ \boxed{ \green{p  -  q = 29}}}} \\  \\  {\blue{to \: find}} \\ { \purple{ \boxed{ \red{p  = ?}}}} \\ { \purple{ \boxed{ \red{q  =? }}}}

According to the given question:

We have two eqn two unknown:

 \to p + q = 988  -  -  -  -  - (1) \\  \to  p - q = 29 -  -  -  -  - (2) \\  \\ adding \: (1) \: and \: (2) \\  \to p + q + p - q = 988 + 29 \\  \to 2p = 1017 \\  { \pink{ \boxed{ \green{\therefore p =  \frac{1017}{2}}}}}  \\  \\ putting \: value \: of \: p \: in \: (2) \\  \to p - q = 29 \\  \to  \frac{1017}{2}  - q = 29 \\  \to  \frac{1017}{2}  -  \frac{29}{1}  = q \\  \to q =  \frac{1017 - 58}{2}  \\  { \pink{ \boxed{ \green{\therefore q =  \frac{959}{2} }}}}

_________________________________________

Answered by HsNerds
10

Answer:

{\underline{\boxed{\sf{p=\frac{1017}{2}}}}}

{\underline{\boxed{\sf{q=\frac{959}{2}}}}}

Given:

P + Q = 988

  { where both should be positive numbers }

And P - Q = 29

Step-by-step explanation:

Let's solve it using trial and error method,

First we'll arrange them in order and than by solving simply, we will get the answer.

Solution:

{\sf{p+q=988}}

{\sf{p-q=29}}

{\sf{2p=1017}}

{\sf{p=\frac{1017}{2}}}

____________________

So, we got the value of p, 1017/2

than the value of q -

{\sf{\frac{988}{1}-\frac{1017}{2}}}

={\sf{\frac{959}{2}}}}

_____________________

Value of p = 1017/2

value of q = 959/2


Anonymous: Nice ; )
Similar questions