Math, asked by himanshikamble, 11 months ago

Find p and q, if the following equation represents a pair of perpendicular lines
2x²+ 4xy – py² + 4x +qy+1=0​

Answers

Answered by MaheswariS
5

\text{Condition for the pair of straight lines $ax^2+2hxy+by^2+2gx+2fy+c=0$}

\text{to be perpendicular is a+b=0}

\text{Given equation is }

2x^2+ 4xy-py^2+4x+qy+1=0

\text{Here,}

\text{a=2, h=2, b=-p, g=2, f=q/2, c=1}

\text{since the lines are perpendicuar, a+b=0}

\implies\;2-p=0

\implies\bf\,p=2

\text{Condition for pair of straight lines is }\bf\;abc+2fgh-af^2-bg^2-ch^2=0

(2)(-2)(1)+2(q/2)(2)(2)-2(q^2/4)+2(4)-1(4)=0

-4+4q-q^2/2+4=0

4q-q^2/2=0

8q-q^2=0

q(8-q)=0

\bf\;q=0\;\text{or}\;q=8

Similar questions