find p and q so that 1 and -2 are zeros of the polynomial p(x)=x3+10x2+px+q
Answers
Answered by
4
since 1 is the zero...its satisfies the polynomial...
p(1)=1+10+p+q=0
p+q=-11-------(1)
and p(-2)=0
-8+40-2p+q=0
32=2p-q ---------(2)
solving (1) and (2)
p=7,q=-18
I hope this will help u ;)
p(1)=1+10+p+q=0
p+q=-11-------(1)
and p(-2)=0
-8+40-2p+q=0
32=2p-q ---------(2)
solving (1) and (2)
p=7,q=-18
I hope this will help u ;)
shabarinath020:
Thanks
Answered by
12
p(x)=x³+10x²+px+q
1 and -2 are two zeroes
Put x=1,
p(1)=(1)³+10(1)²+p(1)+q=0
1+10+p+q=0
p+q+11=0
p+q= -11 ———(1)
put x= -2,
p(-2)=(-2)³+10(-2)²+p(-2)+q=0
-8+10(4)-2p+q=0
-8+40-2p+q=0
-2p+q+32=0
-2p+q=-32————(2)
(1)-(2)
p+q=-11
-2p+q= -32
________
3p=21
p=21/3
p=7
p+q=-11
7+q= -11
q=-11-7=-18
p=7,q= -18
1 and -2 are two zeroes
Put x=1,
p(1)=(1)³+10(1)²+p(1)+q=0
1+10+p+q=0
p+q+11=0
p+q= -11 ———(1)
put x= -2,
p(-2)=(-2)³+10(-2)²+p(-2)+q=0
-8+10(4)-2p+q=0
-8+40-2p+q=0
-2p+q+32=0
-2p+q=-32————(2)
(1)-(2)
p+q=-11
-2p+q= -32
________
3p=21
p=21/3
p=7
p+q=-11
7+q= -11
q=-11-7=-18
p=7,q= -18
Similar questions