Math, asked by alick1519, 11 months ago

Find p if distance between points (2,3) and (5,p) is 10 units

Answers

Answered by Anonymous
2

\huge{\mathcal{\blue{\underline{Answer}}}}

Distance formula :

 =  \sqrt{(x  _{2} - x _{1}) {}^{2}  + (y _{2} - y _{1}   } ) \\ 10 =  \sqrt{(5 - 2) {}^{2}  + (p - 3) {}^{2} }  \\ (10) {}^{2}  = (3) {}^{2}  + (p - 3) {}^{2}  \\ 100 - 9 = (p - 3) {}^{2}  \\ 91 =( p - 3) {}^{2}  \\  \sqrt{91}   + 3 = p

Answered by Anonymous
7

\Huge{\underline{\underline{\blue{\mathfrak{Answer :}}}}}

\Large{\sf{Given :}}

Distance between two points (2 , 3) and (5 , p) is 10 units.

\rule{200}{2}

\LARGE{\sf{To \: Find  :}}

Value of p.

\rule{200}{2}

\LARGE{\sf{Solution :}}

We know the distance formula,

\large{\boxed{\boxed{\green{\tt{Distance \: formula \: = \: \sqrt{(x_{2} - x_{1})^2 (y_{2} - y_{1})^2}}}}}}

Where,

x2 = 5 , x1 = 2 , y2 = p and y1 = 3

(Putting Values)

\rule{200}{2}

 \sf{x =  \sqrt{ {( {5 - 2)} }^{2} + ( {p - 3)}^{2}  } } \\  \\  \bf{Taking \: square \: root \: to \: LHS} \\  \\  \sf{ {10}^{2} =  {3}^{2}   +  {(p - 3)}^{2} }

 \sf{100 - 9 = (p - 3)^2 } \\ \\ \sf{91 = (p - 3)^2} \\ \\ \bf{Taking \: square \: to \: LHS}\\  \\  \sf{\sqrt{91} = p - 3} \\  \\ \sf{ \sqrt{91} + 3  =p}

\LARGE{\boxed{\boxed{\red{\bf{p = \sqrt{91} + 3}}}}}

Similar questions