Math, asked by AmritaNarangAJ, 1 year ago

find particular solution of ( y - sin x)dx + tanx dy =0

Answers

Answered by uditutreja2005
5

not realate d to my grade level

Answered by tardymanchester
14

Answer:

y= \frac{log secx}{sinx}+\frac{c}{sinx}

Step-by-step explanation:

Given : (y-sin x)dx+(tanx)dy =0

To find : Particular solution

Solution :  (y-sin x)dx+(tanx)dy =0

\rightarrow(tanx)dy =(sin x-y)dx

\rightarrow\frac{dy}{dx}=\frac{(sin x-y)}{tanx}

\rightarrow\frac{dy}{dx}=\frac{1}{cosx}-\frac{y}{tanx}

\rightarrow\frac{dy}{dx}+\frac{y}{tanx}=\frac{1}{cosx}

Differential equation is of the form :

\frac{dy}{dx}+Py=Q

where P=\frac{1}{tanx} and Q=\frac{1}{cosx}

Finding integrating factor e^{\int P dx }

IF = e^{\int\frac{1}{tanx} dx }

IF = e^{\int cotx dx }

IF = e^{log sinx}

IF = sinx

Solution → y\times IF= \int (Q\times IF)dx +c

∴  y\times sinx= \int (\frac{1}{cosx}\times sinx)dx +c

\rightarrow y\times sinx= \int (\frac{sinx}{cosx})dx +c

\rightarrow y\times sinx= \int tanx dx +c

\rightarrow y\times sinx= log secx +c

\rightarrow y= \frac{log secx}{sinx}+\frac{c}{sinx}

Therefore, the solution is y= \frac{log secx}{sinx}+\frac{c}{sinx}

Similar questions