Math, asked by dahiyakrishna39, 19 days ago

Find points of discontinuity of f defined by f (x) = |x + 1| - |x + 2| + |x - 1|​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) =  |x + 1|  -  |x + 2|  +  |x - 1|  \\

Let first define the function f(x).

We know, By definition of Modulus function, we have

\begin{gathered}\begin{gathered}\bf\:  |x|  = \begin{cases} &\sf{ - x \:  \: if \: x < 0} \\  \\ &\sf{ \:  \: x \:  \: if \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered} \\

So, using this definition, f(x) is defined as

\begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{ - (x + 1) + (x + 2) - (x - 1) \:  \: if \: x \leqslant  - 2} \\ &\sf{ - (x + 1) - (x  +  2) - (x - 1) \:  \: if \:  - 2 < x \leqslant  - 1}\\ &\sf{(x + 1) - (x + 2) - (x - 1) \:  \: if \:  - 1 < x \leqslant 1}\\ &\sf{(x + 1) - (x + 2) + (x - 1) \:  \: if \: x > 1} \end{cases}\end{gathered}\end{gathered} \\

\begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{ 2 - x \:  \: if \: x \leqslant  - 2} \\ &\sf{ - (2 + 3x) \:  \: if \:  - 2 < x \leqslant  - 1}\\ &\sf{ - x \:  \: if \:  - 1 < x \leqslant 1}\\ &\sf{x - 2  \:  \: if \: x > 1} \end{cases}\end{gathered}\end{gathered} \\

So, breaking points are -2, - 1 and 1

So, we have to check continuity at x = - 2, x = - 1, x = 1

Case :- 1 Continuity at x = - 2

\rm \: f( - 2) = 2 - ( - 2) = 4 \\

Left Hand Limit at x = - 2

\displaystyle\lim_{x \to -2^-}\rm f(x)

\rm \:  =  \: \displaystyle\lim_{x \to -2^-}\rm (2 - x) \\

To evaluate this limit, we use method of Substitution,

So Substitute

\rm \: x = -  2 - h, \:  \:  \: as \: x \:  \to \:  - 2, \:  \: so \: h \:  \to \: 0 \\

So, on substituting, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm [2 - ( - 2 - h)] \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm [2 + 2 + h] \\

\rm \:  =  \: 4 \\

Right Hand Limit at x = - 2

\displaystyle\lim_{x \to -2^ + }\rm f(x)

\rm \:  =  \: \displaystyle\lim_{x \to -2^-}\rm  - (2 + 3x) \\

So, Substitute

\rm \: x = -  2 +  h, \:  \:  \: as \: x \:  \to \:  - 2, \:  \: so \: h \:  \to \: 0 \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  - [2 + 3( - 2 + h)] \\

\rm \:  =  \:  - (2 - 6)

\rm \:  =  \: 4 \\

\rm\implies \:f( - 2) = \displaystyle\lim_{x \to -2^-}\rm f(x) = \displaystyle\lim_{x \to -2^ + }\rm f(x) \\

\rm\implies \:f(x) \: is \: continuous \: at \: x =  - 2

Case :- 2 Continuity at x = - 1

\rm \: f( - 1) =  - (2 - 3) = 1 \\

Left Hand Limit at x = - 1

\displaystyle\lim_{x \to -1^-}\rm f(x)

\rm \:  =  \: \displaystyle\lim_{x \to -1^-}\rm  - (2 + 3x) \\

So, Substitute

\rm \: x = -  1 - h, \:  \:  \: as \: x \:  \to \:  - 1, \:  \: so \: h \:  \to \: 0 \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  - [2 +  3( - 1 - h)] \\

\rm \:  =  \:  - (2 - 3)

\rm \:  =  \: 1

Right Hand Limit at x = - 1

\displaystyle\lim_{x \to -1^ + }\rm f(x)

\rm \:  =  \: \displaystyle\lim_{x \to -1^ + }\rm  - x

So, Substitute

\rm \: x = -  1  +  h, \:  \:  \: as \: x \:  \to \:  - 1, \:  \: so \: h \:  \to \: 0 \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  - ( - 1 + h)

\rm \:  =  \: 1

\rm\implies \:f( - 1) = \displaystyle\lim_{x \to -1^-}\rm f(x) = \displaystyle\lim_{x \to -1^ + }\rm f(x) \\

\rm\implies \:f(x) \: is \: continuous \: at \: x =  - 1

Case :- 3 Continuity at x = 1

\rm \: f(1) =  - 1

Left Hand Limit at x = 1

\displaystyle\lim_{x \to 1^-}\rm f(x)

\rm \:  =  \: \displaystyle\lim_{x \to 1^-}\rm  - x

So, Substitute

\rm \: x = 1 - h, \:  \:  \: as \: x \:  \to \: 1, \:  \: so \: h \:  \to \: 0 \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  - (1 - h) \\

\rm \:  =  \:  -  \: 1

Right Hand Limit at x = 1

\displaystyle\lim_{x \to 1^ + }\rm f(x)

\rm \:  =  \: \displaystyle\lim_{x \to 1^ + }\rm (x - 2)

So, Substitute

\rm \: x = 1 + h, \:  \:  \: as \: x \:  \to \: 1, \:  \: so \: h \:  \to \: 0 \\

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm (1 + h - 2)

\rm \:  =  \:  -  \: 1

\rm\implies \:f(1) = \displaystyle\lim_{x \to 1^-}\rm f(x) = \displaystyle\lim_{x \to 1^ + }\rm f(x) \\

\rm\implies \:f(x) \: is \: continuous \: at \: x =   1

So, from this, we get

\rm\implies \:f(x) \: is \: continuous \: at \: x =  - 2, - 1, 1

\rm\implies \:f(x) \: is \: continuous \: everywhere

\rm\implies \:There \: is \: no \: point \: of \: discontinuity. \\

Similar questions