Find positive value of n for which the coefficient of x² in the expansion of ( 1 + x)^n is 10.
Answers
Answered by
2
Answer:
SOLUTION
TO DETERMINE
The positive value of n for which the coefficient of x² in the expansion of
\sf{ {(1 + x)}^{n} \: \: is \: \: 10 }(1+x)
n
is10
EVALUATION
\sf{First \: we \: take \: a \: look \: on \: the \: expansion \: of \: \: {(1 + x)}^{n} }Firstwetakealookontheexpansionof(1+x)
n
\sf{ {(1 + x)}^{n} = {}^{n}C_0 + {}^{n}C_1 \: x + {}^{n}C_2 \: {x}^{2} + {}^{n}C_3 \: {x}^{3} + ... + {}^{n}C_n \: {x}^{n} }(1+x)
n
\sf{Coefficient \: of \: \: {x}^{2} \: \: in \: {(1 + x)}^{n} \: \: is \: \: {}^{n} C_2 }Coefficientofx
2
in(1+x)
n
is
n
C
2
So by the given condition
\sf{ {}^{n} C_2 = 10 }
n
C
2
=10
\sf{ \implies \: {}^{n} C_2 = {}^{5} C_2 }⟹
n
C
2
=
5
C
2
\sf{ \implies \: n = 5 }⟹n=5
FINAL ANSWER
The required value of n = 5
Similar questions