Math, asked by Economy44327, 1 year ago

find products (7/3x^2yz)*(2/3y^2zx)*(-5xy^2zx)​


Economy44327: pls ans

Answers

Answered by Swarup1998
7
\underline{\text{Solution :}}

\mathrm{\frac{7}{3x^{2}yz}*\frac{2}{3y^{2}zx}*(-5xy^{2}zx)}

\small{\mathrm{=\frac{7}{3}(x^{2}yz)^{-1}*\frac{2}{3}(y^{2}zx)^{-1}*(-5xy^{2}zx)}}

\small{\mathrm{=\frac{7}{3}*\frac{2}{3}*(-5)*x^{-2}y^{-1}z^{-1}*y^{-2}z^{-1}x^{-1}*xy^{2}zx}}

\small{\mathrm{=-\frac{70}{9}(x^{-2}.x^{-1}.x)(y^{-1}.y^{-2}.y^{2})(z^{-1}.z^{-1}.z)}}

\mathrm{=-\frac{70}{9}*x^{-2-1+1}*y^{-1-2+2}*z^{-1-1+1}}

\mathrm{=-\frac{70}{9}x^{-2}y^{-1}z^{-1}}

=\boxed{\mathrm{-\frac{70}{9x^{2}yz}}}

\underline{\text{Laws of Indices :}}

\mathrm{1.\:a^{m}*a^{n}=a^{m+n},\:m,\:n}\in \mathbb{Q}

\mathrm{2.\:a^{-m}=\frac{1}{a^{m}},\:m}\in\mathbb{Q}

\mathrm{3.\:(a^{m})^{n}=a^{mn},\:m,\:n}\in\mathbb{Q}

Swarup1998: Is it correct?
Economy44327: yes
Swarup1998: Okay!
Economy44327: ok
Similar questions