Math, asked by tabasummalik031, 9 months ago

find quaderatic polynomial when sum and product of its zeroes are 6 and 8?​

Answers

Answered by PerfectOnBrainly
62

\orange{\bold{\underline{\underline{Given:-}}}}

  • Sum of zeroes of quadratic polynomial = 6
  • Product of zeroes of quadratic polynomial = 8

\orange{\bold{\underline{\underline{To \: find:-}}}}

  • Quadratic Polynomial

 \large \underline{ \red{ \boxed{ \bf \red{Solution:-}}}}

\sf{Suppose \:   \:  \:  \alpha   \:  \: \: and \:  \:  \:  \beta  \: is \: the \: zeroes \: of \: the \: Polynomial}

  • Sum of zeroes = \sf{\alpha \: + \: \beta}
  • Product of zeroes = \sf{\alpha \: \beta}

Formula Used :

 \tt \underline{ \blue{ \boxed{ \bf \green{{x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  = 0}}}}

Putting the values, We Get the Polynomial

\sf\purple{{x}^{2}  - 6x + 8 = 0}

\rm\pink{Verification:–}

\sf{{x}^{2}  - 4x - 2x + 8 = 0}

\sf{x(x - 4)  - 2(x - 4) = 0}

\sf{(x - 4)(x - 2) = 0}

\sf\purple{x = 4 \: and \: 2}

  • Sum of zeroes = 4 + 2 = 6
  • Product of zeroes = 4 × 2 = 8

</strong><strong>\</strong><strong>b</strong><strong>f</strong><strong>\</strong><strong>o</strong><strong>r</strong><strong>a</strong><strong>n</strong><strong>g</strong><strong>e</strong><strong>\</strong><strong>c</strong><strong>h</strong><strong>e</strong><strong>c</strong><strong>k</strong><strong>m</strong><strong>a</strong><strong>r</strong><strong>k</strong><strong>{</strong><strong>Verif</strong><strong>ied</strong><strong>}

Answered by Anonymous
38

ᎯᏁᏕᏯᎬᏒ

Let the zeros of the polynomial be α & β.

α+β = 6

αβ = 8

We know that a polynomial can be written as:-

x² - (α+β)x + αβ = 0

Therefore, the polynomial is:-

x² - 6x + 8 = 0

Similar questions