Math, asked by Neoman, 1 year ago

find
quadratic
Polynomial where zerws are 3+√5 by 5
of 3-root5 by 5​

Answers

Answered by prk2002
3

Step-by-step explanation:

alpha beta are roots of equation

Attachments:
Answered by Anonymous
0

Step-by-step explanation:

Let ,

 \alpha  \: be \:  \frac{3 +  \sqrt{5} }{5}

and

 \beta  \: be \:  \frac{3 -  \sqrt{5} }{5}

We know formula of quadratic ,

 {x}^{2}  - ( \alpha  +  \beta )x \:  + ( \alpha  \beta ) = 0

So let's find,

 \alpha  +  \beta  \\ and \\  \alpha  \beta

 \alpha  +  \beta  =  \frac{3 +  \sqrt{5} }{5} +  \frac{3  -   \sqrt{5} }{5}

therefore \\  \alpha  +  \beta  =  \frac{6}{5}

now \\  \alpha  \beta  =  \frac{3 +  \sqrt{5} }{5}  \times  \frac{3  -   \sqrt{5} }{5}

 \alpha  \beta  =  \frac{4}{25}

ok \: we \: have \: almost \: done \\ now \: lets \: finish \: this \: problem

so \: this \: is \: your \: required \: answer

 {x}^{2}  -  \frac{6}{5}x \:  +  \frac{4}{25}  = 0

Hope it helps uh!

Similar questions