Math, asked by ayushridhunde4, 9 months ago

find quadratic polynomial whose sum of zeroes are 3/√2,-5√2​

Answers

Answered by Anonymous
2

\bf\huge\blue{\underline{\underline{ Question : }}}

Find quadratic polynomial whose sum of zeroes are 3/√2 and product of the zeroes are -5√2.

\bf\huge\blue{\underline{\underline{ Solution : }}}

Given that,

\tt\:\rightarrow Sum\:of\:the\:zeroes : \alpha + \beta = \cfrac{3}{\sqrt{2}}

\tt\:\rightarrow Product\:of\:the\:zeroes : \alpha \beta =- \cfrac{5}{\sqrt{2}}

To find,

  • The Quadratic Polynomial.

Let,

The form of Quadratic Polynomial is :

\boxed{\rm{\red{ x^{2} -(\alpha+\beta)x + \alpha\beta = 0}}}

  • Substitute the zeroes.

\sf\:\implies x^{2} -(\cfrac{3}{\sqrt{2}})x + (-\cfrac{5}{\sqrt{2}})=0

\sf\:\implies x^{2}  - \cfrac{3x}{\sqrt{2}} - \cfrac{5}{\sqrt{2}}=0

\sf\:\implies \cfrac{\sqrt{2}x^{2} - 3x  -  5}{2}=0

\sf\:\implies \sqrt{2}x^{2} - 3x  -  5 = 0 \times 2

\sf\:\implies \sqrt{2}x^{2} - 3x  -  5 = 0

\underline{\boxed{\rm{\purple{\therefore Hence, \:the\:Quadratic\:Polynomial\:is\:\sqrt{2}x^{2} - 3x - 5 = 0.}}}}\:\orange{\bigstar}

Similar questions