FIND QUADRATIC POLYNOMIAL WHOSE ZEROES ARE 1/4,-1
Answers
Answer:
hola.....✌️✌️
Explanation:
Find a quadratic polynomial whose zeros are –4 and 2.
Find a quadratic polynomial whose zeros are –4 and 2.Answer:
Find a quadratic polynomial whose zeros are –4 and 2.Answer:Step-by-step explanation:
Find a quadratic polynomial whose zeros are –4 and 2.Answer:Step-by-step explanation:To find: Quadratic Polynomial.
Find a quadratic polynomial whose zeros are –4 and 2.Answer:Step-by-step explanation:To find: Quadratic Polynomial.where , ( α + β ) is sum of zeroes and αβ is product of zeroes.
Find a quadratic polynomial whose zeros are –4 and 2.Answer:Step-by-step explanation:To find: Quadratic Polynomial.where , ( α + β ) is sum of zeroes and αβ is product of zeroes.Here, α = - 4 and β = 2. ⇒ α + β = -4 + 2 = -2.
Find a quadratic polynomial whose zeros are –4 and 2.Answer:Step-by-step explanation:To find: Quadratic Polynomial.where , ( α + β ) is sum of zeroes and αβ is product of zeroes.Here, α = - 4 and β = 2. ⇒ α + β = -4 + 2 = -2.αβ = -4 × 2 = -8. ⇒ Quadratic Polynomial = k ( x² - ( -2 ) x + ( -8 ) ) = k ( x² + 2x - 8 )
Find a quadratic polynomial whose zeros are –4 and 2.Answer:Step-by-step explanation:To find: Quadratic Polynomial.where , ( α + β ) is sum of zeroes and αβ is product of zeroes.Here, α = - 4 and β = 2. ⇒ α + β = -4 + 2 = -2.αβ = -4 × 2 = -8. ⇒ Quadratic Polynomial = k ( x² - ( -2 ) x + ( -8 ) ) = k ( x² + 2x - 8 )Therefore, Quadratic Polynomial is k ( x² + 2x - 8 )
Answer:
given: 1/4 and -1 are zeroes of a quadratic polynomial.
let the zeroes be α and β.
⇒1/4 =α , -1 = β
we know that the general form of a quadratic equation is x²-(α+β)x + (αβ)
⇒ x²- (1/4 +(-1))x + (1/4× -1)
⇒ x² - (-3/4)x +(-1/4)
⇒x² +3/4x - 1/4 .... ( Now take the L.C.M)
⇒ 4x² +3x-1
∴ the quadratic polynomial whose zeroes are 1/4 and -1 is 4x² + 3x - 1.