Math, asked by aviiikour, 10 months ago

Find quadratic polynomial with sum of zeroes equal to 1/4 and product equal to 1/3

Answers

Answered by Anonymous
5

Given :

 \sf \implies Sum  \: of \:  zeroes  \: ( \alpha +  \beta)  =  \frac{1}{4} \\  \\ \sf \implies product \: of \: zeroes \: ( \alpha \beta) =  \frac{1}{3}

To Find :

\implies Quadratic polynomial

Solution :

Formula used

 \large\implies  \boxed{\boxed{ \sf{x}^{2} + ( \alpha + \beta)x +  \alpha \beta}}

Substitute values in formula

 \sf \implies {x}^{2} +  \bigg( \frac{1}{4} \bigg )x + \frac{1}{3} = 0 \\  \\ \sf \implies {x}^{2} +\frac{x}{4}+  \frac{1}{3} = 0 \\  \\ \sf \implies \frac{12 {x}^{2} + 3x + 4}{12} = 0 \\  \\ \large\implies \boxed{ \boxed{ \sf12 {x}^{2} + 3x + 4 = 0}}

Answered by sethrollins13
9

✯✯ QUESTION ✯✯

Find quadratic polynomial with sum of zeroes equal to \dfrac{1}{4}and product equal to \dfrac{1}{3}..

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\longrightarrow{Sum\:of\:Zeroes(\alpha+\beta)=\dfrac{1}{4}}

\longrightarrow{Product\:of\:Zeroes(\alpha\beta)=\dfrac{1}{3}}

Using Formula : -

\longrightarrow{\small{\boxed{\boxed{\bold{\purple{\sf{{x}^{2}+(\alpha+\beta)x+(\alpha\beta)}}}}}}}

Putting Values : -

\longrightarrow{{x}^{2}+\dfrac{1}{4}x+\dfrac{1}{3}=0}

\longrightarrow{{x}^{2}+\dfrac{1x}{4}+\dfrac{1}{3}=0}

Taking L.C.M of Denominators : -

\longrightarrow{\dfrac{12x^2+3x+4}{12}=0}

Quadratic Polynomial is: - {12x}^{2}+3x+4

Similar questions